Presynaptic Partners of Dorsal Raphe Serotonergic and GABAergic Neurons

The serotonin system powerfully modulates physiology and behavior in health and disease, yet the circuit mechanisms underlying serotonin neuron activity are poorly understood. The major source of forebrain serotonergic innervation is from the dorsal raphe nucleus (DR), which contains both serotonin and GABA neurons. Using viral tracing combined with electrophysiology, we found that GABA and serotonin neurons in the DR receive excitatory, inhibitory, and peptidergic inputs from the same specific brain regions. Embedded in this overall similarity are important differences. Serotonin neurons are more likely to receive synaptic inputs from anterior neocortex while GABA neurons receive disproportionally higher input from the central amygdala. Local input mapping revealed extensive serotonin-serotonin as well as GABA-serotonin connectivity with a distinct spatial organization. Covariance analysis suggests heterogeneity of both serotonin and GABA neurons with respect to the inputs they receive. These analyses provide a foundation for further functional dissection of the serotonin system.

[1]  K. Svoboda,et al.  The subcellular organization of neocortical excitatory connections , 2009, Nature.

[2]  P. Gaspar,et al.  The developmental role of serotonin: news from mouse molecular genetics , 2003, Nature Reviews Neuroscience.

[3]  E R Kandel,et al.  Synaptic facilitation and behavioral sensitization in Aplysia: possible role of serotonin and cyclic AMP. , 1976, Science.

[4]  F. Bloom Molecular Neuropharmacology: A Foundation for Clinical Neuroscience , 2003 .

[5]  P. Celada,et al.  Control of Dorsal Raphe Serotonergic Neurons by the Medial Prefrontal Cortex: Involvement of Serotonin-1A, GABAA, and Glutamate Receptors , 2001, The Journal of Neuroscience.

[6]  G. Debonnel,et al.  Electrophysiological diversity of the dorsal raphe cells across the sleep–wake cycle of the rat , 2006, The Journal of physiology.

[7]  C. Rampon,et al.  Forebrain afferents to the rat dorsal raphe nucleus demonstrated by retrograde and anterograde tracing methods , 1997, Neuroscience.

[8]  Barry L. Jacobs,et al.  Handbook of the behavioral neurobiology of serotonin , 2010 .

[9]  E. Marder,et al.  From the connectome to brain function , 2013, Nature Methods.

[10]  A. Beaudet,et al.  The serotonin neurons in nucleus raphe dorsalis of adult rat: A light and electron microscope radioautographic study , 1982, The Journal of comparative neurology.

[11]  Sachie K. Ogawa,et al.  Whole-Brain Mapping of Direct Inputs to Midbrain Dopamine Neurons , 2012, Neuron.

[12]  S. Maier,et al.  Medial prefrontal cortex determines how stressor controllability affects behavior and dorsal raphe nucleus , 2005, Nature Neuroscience.

[13]  Charles R. Gerfen,et al.  Targeting Cre Recombinase to Specific Neuron Populations with Bacterial Artificial Chromosome Constructs , 2007, The Journal of Neuroscience.

[14]  K. Svoboda,et al.  Channelrhodopsin-2–assisted circuit mapping of long-range callosal projections , 2007, Nature Neuroscience.

[15]  L. Swanson Brain Architecture: Understanding the Basic Plan , 2002 .

[16]  Chris J. McBain,et al.  The Role of the GluR2 Subunit in AMPA Receptor Function and Synaptic Plasticity , 2007, Neuron.

[17]  S. Sesack,et al.  Prefrontal cortical projections to the rat dorsal raphe nucleus: Ultrastructural features and associations with serotonin and γ‐aminobutyric acid neurons , 2004, The Journal of comparative neurology.

[18]  P. Marin,et al.  Classification and Signaling Characteristics of 5-HT Receptors , 2010 .

[19]  Frederick Rohan Walker,et al.  A critical review of the mechanism of action for the selective serotonin reuptake inhibitors: Do these drugs possess anti-inflammatory properties and how relevant is this in the treatment of depression? , 2013, Neuropharmacology.

[20]  L. Descarries,et al.  Ultrastructure of the Serotonin Innervation in the Mammalian Central Nervous System , 2010 .

[21]  Ian R. Wickersham,et al.  Monosynaptic Restriction of Transsynaptic Tracing from Single, Genetically Targeted Neurons , 2007, Neuron.

[22]  Caryne Craige,et al.  Raphe serotonin neurons are not homogenous: Electrophysiological, morphological and neurochemical evidence , 2011, Neuropharmacology.

[23]  S. Maier,et al.  Stressor controllability and learned helplessness: The roles of the dorsal raphe nucleus, serotonin, and corticotropin-releasing factor , 2005, Neuroscience & Biobehavioral Reviews.

[24]  Adi Mizrahi,et al.  Dissecting Local Circuits: Parvalbumin Interneurons Underlie Broad Feedback Control of Olfactory Bulb Output , 2013, Neuron.

[25]  M. Soiza-Reilly,et al.  Presynaptic gating of excitation in the dorsal raphe nucleus by GABA , 2013, Proceedings of the National Academy of Sciences.

[26]  Ian R. Wickersham,et al.  Cortical representations of olfactory input by trans-synaptic tracing , 2011, Nature.

[27]  Linh Vong,et al.  Leptin Action on GABAergic Neurons Prevents Obesity and Reduces Inhibitory Tone to POMC Neurons , 2011, Neuron.

[28]  G. Ugolini Specificity of rabies virus as a transneuronal tracer of motor networks: Transfer from hypoglossal motoneurons to connected second‐order and higher order central nervous system cell groups , 1995, The Journal of comparative neurology.

[29]  L. Debeljuk,et al.  Tachykinins and the hypothalamo–pituitary–gonadal axis: An update , 2011, Peptides.

[30]  Masahiko Watanabe,et al.  Distinct Neurochemical and Functional Properties of GAD67-Containing 5-HT Neurons in the Rat Dorsal Raphe Nucleus , 2012, The Journal of Neuroscience.

[31]  M. Scanziani,et al.  How Inhibition Shapes Cortical Activity , 2011, Neuron.

[32]  S. Hyman,et al.  Molecular Neuropharmacology: A Foundation for Clinical Neuroscience , 2001 .

[33]  J. Epstein,et al.  Cre reporter mouse expressing a nuclear localized fusion of GFP and β‐galactosidase reveals new derivatives of Pax3‐expressing precursors , 2008, Genesis.

[34]  K. Fuxe,et al.  EVIDENCE FOR THE EXISTENCE OF MONOAMINE-CONTAINING NEURONS IN THE CENTRAL NERVOUS SYSTEM. I. DEMONSTRATION OF MONOAMINES IN THE CELL BODIES OF BRAIN STEM NEURONS. , 1964, Acta physiologica Scandinavica. Supplementum.

[35]  Y. Rao,et al.  Molecular regulation of sexual preference revealed by genetic studies of 5-HT in the brains of male mice , 2011, Nature.

[36]  David J. Anderson,et al.  Genetic dissection of an amygdala microcircuit that gates conditioned fear , 2010, Nature.

[37]  K. Commons,et al.  Forebrain GABAergic projections from the dorsal raphe nucleus identified by using GAD67–GFP knock‐in mice , 2012, The Journal of comparative neurology.

[38]  C. Lowry,et al.  Stress-related Serotonergic Systems: Implications for Symptomatology of Anxiety and Affective Disorders , 2012, Cellular and Molecular Neurobiology.

[39]  S. Nelson,et al.  A Resource of Cre Driver Lines for Genetic Targeting of GABAergic Neurons in Cerebral Cortex , 2011, Neuron.

[40]  O. Hikosaka,et al.  Representation of negative motivational value in the primate lateral habenula , 2009, Nature Neuroscience.

[41]  Minmin Luo,et al.  Habenula “Cholinergic” Neurons Corelease Glutamate and Acetylcholine and Activate Postsynaptic Neurons via Distinct Transmission Modes , 2011, Neuron.

[42]  B. Jacobs,et al.  Structure and function of the brain serotonin system. , 1992, Physiological reviews.

[43]  K. Deisseroth,et al.  A prefrontal cortex–brainstem neuronal projection that controls response to behavioural challenge , 2012, Nature.

[44]  Allan R. Jones,et al.  Genome-wide atlas of gene expression in the adult mouse brain , 2007, Nature.

[45]  L. Heimer,et al.  Substantia innominata: a notion which impedes clinical–anatomical correlations in neuropsychiatric disorders , 1997, Neuroscience.

[46]  R. Valentino,et al.  Distinguishing characteristics of serotonin and non-serotonin-containing cells in the dorsal raphe nucleus: electrophysiological and immunohistochemical studies , 2003, Neuroscience.

[47]  H. Steinbusch,et al.  Immunohistochemical evidence for the presence of γ-aminobutyric acid and serotonin in one nerve cell. A study on the raphe nuclei of the rat using antibodies to glutamate decarboxylase and serotonin , 1983, Brain Research.

[48]  C. Lowry,et al.  Functional topography of midbrain and pontine serotonergic systems: implications for synaptic regulation of serotonergic circuits , 2011, Psychopharmacology.

[49]  A. Erisir,et al.  Monosynaptic Glutamatergic Activation of Locus Coeruleus and Other Lower Brainstem Noradrenergic Neurons by the C1 Cells in Mice , 2013, The Journal of Neuroscience.

[50]  Xiang Zhou,et al.  New Modules Are Added to Vibrissal Premotor Circuitry with the Emergence of Exploratory Whisking , 2013, Neuron.

[51]  M. Hajós,et al.  An electrophysiological and neuroanatomical study of the medial prefrontal cortical projection to the midbrain raphe nuclei in the rat , 1998, Neuroscience.

[52]  K. Deisseroth,et al.  Input-specific control of reward and aversion in the ventral tegmental area , 2012, Nature.

[53]  Marco Tripodi,et al.  Monosynaptic Rabies Virus Reveals Premotor Network Organization and Synaptic Specificity of Cholinergic Partition Cells , 2010, Neuron.

[54]  C J CLEMEDSON,et al.  DYNAMIC RESPONSE OF CHEST WALL AND LUNG INJURIES IN RABBITS EXPOSED TO AIR SHOCK WAVES OF SHORT DURATION. , 1964, Acta physiologica Scandinavica. Supplementum.

[55]  Rajesh Ranganathan,et al.  C. elegans Locomotory Rate Is Modulated by the Environment through a Dopaminergic Pathway and by Experience through a Serotonergic Pathway , 2000, Neuron.