Appraisal of active deformation from drainage network and faults: inferences from non-linear analysis

This investigation reveals the relative susceptibility of the landscape to surface deformation by means of non-linear analysis of drainage network. The geometrical characteristics of the drainage network are quite capable of discriminating the impact of active tectonics. This study uses fractal dimension, lacunarity and succolarity techniques to demarcate numerous zones where the drainage network is tectonically controlled. Rose diagrams are used to compare drainage network orientation with the faults. This investigation is primarily based on the basic concept that the drainage network is subject to linearized and modify from its natural geometrical shape and orientation under the influence of tectonic activity. The areas with similar fractal dimension can be further discriminated by lacunarity and succolarity analysis. A detailed textural investigation of the drainage network (Strahler order ≥2) of Secchia, Panaro and Reno mountain river basins in northern Apennines, Italy is carried out to analyze the linearization, translational invariance and rotation of the stream patterns. The low fractal dimension values of Secchia, Panaro, Reno, Dragone, Dolo and Setta rivers indicate tectonically controlled drainage. The results reveal that the fractal dimension, lineament density and orientation analysis of drainage network and faults is a significant tool to pinpoint areas susceptible to active deformation.

[1]  Michael Batty,et al.  Fractal Cities: A Geometry of Form and Function , 1996 .

[2]  A. Scheidegger Morphometric analysis and its relation to tectonics in Macaronesia , 2002 .

[3]  N. Hovius,et al.  Tectonics, Climate, and Landscape Evolution , 2006 .

[4]  A. Conci,et al.  Succolarity: Defining a method to calculate this fractal measure , 2008, 2008 15th International Conference on Systems, Signals and Image Processing.

[5]  C. Serra,et al.  Lacunarity, predictability and predictive instability of the daily pluviometric regime in the Iberian Peninsula , 2007 .

[6]  John C. Russ Fractal dimension measurement of engineering surfaces , 1998 .

[7]  D. Turcotte Self-organized complexity in geomorphology : Observations and models , 2007 .

[8]  David G. Tarboton,et al.  On the extraction of channel networks from digital elevation data , 1991 .

[9]  R. O'Neill,et al.  Lacunarity indices as measures of landscape texture , 1993, Landscape Ecology.

[10]  T. Johnson,et al.  Recent tectonics in the Turkana Rift (North Kenya): an integrated approach from drainage network, satellite imagery and reflection seismic analyses , 2004 .

[11]  P. Allen,et al.  The use of lacunarity for visual texture characterization of pre-sliced cooked pork ham surface intensities , 2010 .

[12]  Gábor Timár,et al.  Fractal dimension estimations of drainage network in the Carpathian-Pannonian system. , 2007 .

[13]  John F. O'Callaghan,et al.  The extraction of drainage networks from digital elevation data , 1984, Comput. Vis. Graph. Image Process..

[14]  Heping Xie,et al.  Multifractal characterization of rock fracture surfaces , 1999 .

[15]  C. Sparrow The Fractal Geometry of Nature , 1984 .

[16]  J. Parrot,et al.  Measurement of DEM roughness using the local fractal dimension , 2005 .

[17]  P. Fredi,et al.  Morphological and morphometric approach to the study of the structural arrangement of northeastern Abruzzo (central Italy) , 1996 .

[18]  P. Ambrosetti,et al.  Neotectonic map of Italy : scale 1:500,000 , 1987 .

[19]  A. J. Gerrard,et al.  FRACTAL ANALYSIS OF JOINT SPACING AND LANDFORM FEATURES ON THE DARTMOOR GRANITE , 1999 .

[20]  P. Burrough Fractal dimensions of landscapes and other environmental data , 1981, Nature.

[21]  D. Montgomery,et al.  Distribution of bedrock and alluvial channels in forested mountain drainage basins , 1996, Nature.

[22]  Claudio Chiarabba,et al.  A new view of Italian seismicity using 20 years of instrumental recordings , 2005 .

[23]  Richard Gloaguen,et al.  Remote Sensing Analysis of Crustal Deformation using River Networks , 2008, IGARSS 2008 - 2008 IEEE International Geoscience and Remote Sensing Symposium.

[24]  W. Hargrove,et al.  Lacunarity analysis: A general technique for the analysis of spatial patterns. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[25]  Leonello Serva,et al.  ITHACA Italy Hazard from Capable Faults: a database of active faults of the Italian onshore territory , 2000 .

[26]  Henri Maître,et al.  Fractal characterization of a hydrological basin using SAR satellite images , 1999, IEEE Trans. Geosci. Remote. Sens..

[27]  Machida,et al.  Quantum magnetic oscillations and rapid oscillation phenomena in (TMTSF)2X (X=ClO4 and NO3). , 1996, Physical review. B, Condensed matter.

[28]  N. Snyder,et al.  Tectonics from topography: Procedures, promise, and pitfalls , 2006 .

[29]  R. Rosso,et al.  On the fractal dimension of stream networks , 1989 .

[30]  A. N. Strahler The earth sciences , 1971 .

[31]  R. Feagin,et al.  Edge effects in lacunarity analysis , 2007 .

[32]  S. K. Jenson,et al.  Extracting topographic structure from digital elevation data for geographic information-system analysis , 1988 .

[33]  J. Goff Comment on “Fractal mapping of digitized images: Application to the topography of arizona and comparison with synthetic images” by J. Huang and D. L. Turcotte , 1990 .

[34]  Filippo Panini,et al.  Schema introduttivo alla geologia delle Epiliguridi dell'Appennino modenese e delle aree limitrofe , 1987 .

[35]  D. L. Turcotte,et al.  Fractal mapping of digitized images: Application to the topography of Arizona and comparisons with synthetic images , 1989 .

[36]  M. Seta Azimuthal transects of stream orientations: An advanced in understanding the regional morphotectonic setting of eastern Abruzzo (Central Italy) , 2004 .

[37]  G. Henebry,et al.  Fractal signature and lacunarity in the measurement of the texture of trabecular bone in clinical CT images. , 2001, Medical engineering & physics.

[38]  W. Culling,et al.  The fractal geometry of the soil—covered landscape , 1987 .

[39]  Heping Xie,et al.  DIRECT FRACTAL MEASUREMENT AND MULTIFRACTAL PROPERTIES OF FRACTURE SURFACES , 1998 .

[40]  Hartmut Jürgens,et al.  Chaos and Fractals: New Frontiers of Science , 1992 .

[41]  Xuejun Liu,et al.  Multi-scale structure of channel network in Jiuyuangou drainage basin , 2007, Geoinformatics.

[42]  Richard Gloaguen,et al.  Automatic extraction of faults and fractal analysis from remote sensing data , 2007 .

[43]  Kenneth Falconer,et al.  Fractal Geometry: Mathematical Foundations and Applications , 1990 .

[44]  M. B. Filho,et al.  ACCURACY OF LACUNARITY ALGORITHMS IN TEXTURE CLASSIFICATION OF HIGH SPATIAL RESOLUTION IMAGES FROM URBAN AREAS , 2008 .

[45]  D. Greenbaum Review of remote sensing applications to groundwater exploration in basement and regolith , 1985 .

[46]  Pinliang Dong,et al.  Test of a new lacunarity estimation method for image texture analysis , 2000 .

[47]  Pinliang Dong,et al.  Lacunarity for Spatial Heterogeneity Measurement in GIS , 2000, Ann. GIS.

[48]  P. Frankhauser,et al.  Fractals and Geography , 2007 .

[49]  G. D. Jeong,et al.  Fractal characteristics of dense stream networks , 2001 .

[50]  J. Pierini,et al.  Fractal analysis of tidal channels in the Bahı́a Blanca Estuary (Argentina) , 2004 .

[51]  W. Hobbs Repeating patterns in the relief and in the structure of land , 1911 .

[52]  Emilie R. Zernitz Drainage Patterns and Their Significance , 1932, The Journal of Geology.

[53]  Rafael Heitor Correia de Melo,et al.  Using Fractal Characteristics such as Fractal Dimension, Lacunarity and Succolarity to Characterize Texture Patterns on Images , 2007 .

[54]  Maggi Kelly,et al.  Interpretation of scale in paired quadrat variance methods , 2004 .

[55]  Nicola Creati,et al.  A lithospheric-scale seismogenic thrust in central Italy , 2003 .

[56]  Nathaniel A. Lifton,et al.  Tectonic, climatic and lithologic influences on landscape fractal dimension and hypsometry : implications for landscape evolution in the San Gabriel Mountains, California , 1992 .

[57]  C. Twidale River patterns and their meaning , 2004 .

[58]  M. Seta,et al.  Quantitative morphotectonic analysis as a tool for detecting deformation patterns in soft-rock terrains: a case study from the southern Marches, Italy / Analyse morphotectonique quantitative dans une province lithologique enregistrant mal les déformations : les Marches méridionales, Italie , 2004 .

[59]  K. Clarke Computation of the fractal dimension of topographic surfaces using the triangular prism surface area method , 1985 .

[60]  A. Rinaldo,et al.  Fractal River Basins: Chance and Self-Organization , 1997 .

[61]  Jean-Michel Carozza,et al.  Recent fold growth and drainage development: The Janauri and Chandigarh anticlines in the Siwalik foothills, northwest India , 2006 .

[62]  D. Mark,et al.  Scale-dependent fractal dimensions of topographic surfaces: An empirical investigation, with applications in geomorphology and computer mapping , 1984 .

[63]  M. B. Filho,et al.  Enhancing urban analysis through lacunarity multiscale measurement , 2005 .

[64]  Richard Gloaguen,et al.  Nonlinear analysis of drainage systems to examine surface deformation: an example from Potwar Plateau (Northern Pakistan) , 2010 .

[65]  Aura Conci,et al.  Characterizing the Lacunarity of Objects and Image Sets and Its Use as a Technique for the Analysis of Textural Patterns , 2006, ACIVS.

[66]  M. Goodchild,et al.  Geographic Information Systems and Science (second edition) , 2005 .

[67]  Pinliang Dong,et al.  Lacunarity analysis of raster datasets and 1D, 2D, and 3D point patterns , 2009, Comput. Geosci..

[68]  M. Maiolo,et al.  On the fractal description of natural channel networks , 1996 .

[69]  강태원,et al.  [서평]「Chaos and Fractals : New Frontiers of Science」 , 1998 .

[70]  Carta sismotettonica della Regione Emilia Romagna,scala 1/250000, Note Illustrative , 2004 .

[71]  Reply [to “Comment on ‘Fractal mapping of digitized images: Application to the topography of arizona and comparison with synthetic images’ by J. Huang and D. L. Turcotte”] , 1990 .

[72]  I. Rodríguez‐Iturbe,et al.  The fractal nature of river networks , 1988 .

[73]  B. Mandelbrot How Long Is the Coast of Britain? Statistical Self-Similarity and Fractional Dimension , 1967, Science.

[74]  C. Allain,et al.  Characterizing the lacunarity of random and deterministic fractal sets. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[75]  G. Corti,et al.  Recent and active tectonics of the external zone of the Northern Apennines (Italy) , 2011 .

[76]  Y. Ben‐Zion,et al.  Characterization of Fault Zones , 2003 .