Protocols for Packet Quantum Network Intercommunication

A quantum network, which involves multiple parties pinging each other with quantum messages, could revolutionize communication, computing and basic sciences. A global system of various packet switching quantum and classical networks is called quantum internet, the internet in the future. To pave the way to the future quantum internet, unified protocols that support the distribution of quantum messages within the quantum internet are necessary. Classical network functionalities, ranging from error-control mechanisms to overhead-control strategies, assume that classical information can be correctly read and copied. However, developing quantum internet protocols is more challenging since some classical techniques are forbidden by quantum effects, such as entanglement, measurement, and no-cloning. In this paper, we investigate and propose protocols for packet quantum network intercommunication: quantum User Datagram Protocol (qUDP) and quantum Transmission Control Protocol (qTCP). To protect the fragile quantum information in the quantum internet, qTCP employs techniques of quantum error-correcting codes as well as classical techniques of stack design. In particular, the creation of the logical process-to-process connections of qTCP is accomplished by a quantum version of the three-way handshake protocol.

[1]  Nicolas Gisin,et al.  Quantum repeaters based on atomic ensembles and linear optics , 2009, 0906.2699.

[2]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.

[3]  Joseph D. Touch,et al.  Designing quantum repeater networks , 2013, IEEE Communications Magazine.

[4]  J. Schmiedmayer,et al.  Solid-state electron spin lifetime limited by phononic vacuum modes , 2017, Nature Materials.

[5]  S. Braunstein,et al.  Physics: Unite to build a quantum Internet , 2016, Nature.

[6]  Christian Schaffner,et al.  Quantum Homomorphic Encryption for Polynomial-Sized Circuits , 2016, CRYPTO.

[7]  Urmila Mahadev,et al.  Classical Verification of Quantum Computations , 2018, 2018 IEEE 59th Annual Symposium on Foundations of Computer Science (FOCS).

[8]  Robert E. Kahn,et al.  A Protocol for Packet Network Intercommunication , 1974 .

[9]  Elham Kashefi,et al.  Universal Blind Quantum Computation , 2008, 2009 50th Annual IEEE Symposium on Foundations of Computer Science.

[10]  D. Dieks Communication by EPR devices , 1982 .

[11]  David Elkouss,et al.  Tools for quantum network design , 2020, ArXiv.

[12]  Axel Dahlberg,et al.  Designing a quantum network protocol , 2020, CoNEXT.

[13]  Damian Podareanu,et al.  NetSquid, a NETwork Simulator for QUantum Information using Discrete events , 2020, Communications Physics.

[14]  Shouqian Shi,et al.  Concurrent Entanglement Routing for Quantum Networks: Model and Designs , 2020, SIGCOMM.

[15]  Albert Einstein,et al.  Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? , 1935 .

[16]  W. Wootters,et al.  A single quantum cannot be cloned , 1982, Nature.

[17]  Andreas Reiserer,et al.  Cavity-based quantum networks with single atoms and optical photons , 2014, 1412.2889.

[18]  Andrew Chi-Chih Yao,et al.  Quantum Circuit Complexity , 1993, FOCS.

[19]  Simon J. Devitt,et al.  The Path to Scalable Distributed Quantum Computing , 2016, Computer.

[20]  H. J. Kimble,et al.  The quantum internet , 2008, Nature.

[21]  Zvika Brakerski,et al.  A Cryptographic Test of Quantumness and Certifiable Randomness from a Single Quantum Device , 2018, 2018 IEEE 59th Annual Symposium on Foundations of Computer Science (FOCS).

[22]  Chip Elliott,et al.  Quantum cryptography in practice , 2003, SIGCOMM '03.

[23]  William K. Wootters,et al.  Reduction of Quantum Entropy by Reversible Extraction of Classical Information , 1994 .

[24]  W. Munro,et al.  Inside Quantum Repeaters , 2015, IEEE Journal of Selected Topics in Quantum Electronics.

[25]  Leandros Tassiulas,et al.  Routing entanglement in the quantum internet , 2017, npj Quantum Information.

[26]  Giuseppe Bianchi,et al.  The Quantum Internet : Networking Challenges in Distributed Quantum Computing , 2019 .

[27]  Peter W. Shor,et al.  Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..

[28]  John Preskill,et al.  Quantum Computing in the NISQ era and beyond , 2018, Quantum.

[29]  Jacob M. Taylor,et al.  Quantum repeater with encoding , 2008, 0809.3629.

[30]  2013 , 2018, Eu minha tía e o golpe do atraso.

[31]  N. Gisin,et al.  Quantum repeaters with photon pair sources and multimode memories. , 2007, Physical review letters.

[32]  S. Wehner,et al.  Quantum internet: A vision for the road ahead , 2018, Science.

[33]  Jonathan P Dowling,et al.  Quantum technology: the second quantum revolution , 2003, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[34]  Vinton G. Cerf,et al.  A protocol for packet network intercommunication , 1974, CCRV.

[35]  Gilles Brassard,et al.  Experimental Quantum Cryptography , 1990, EUROCRYPT.

[36]  Bo'az Klartag,et al.  Quantum one-way communication can be exponentially stronger than classical communication , 2011, STOC '11.

[37]  Zhi Ma,et al.  A finite Gilbert-Varshamov bound for pure stabilizer quantum codes , 2004, IEEE Transactions on Information Theory.

[38]  Giuseppe Bianchi,et al.  Quantum internet: from communication to distributed computing! , 2018, NANOCOM.

[39]  Lov K. Grover A fast quantum mechanical algorithm for database search , 1996, STOC '96.

[40]  Rodney Van Meter,et al.  Quantum networking and internetworking , 2012, IEEE Network.

[41]  Prem Kumar,et al.  Infrastructure for the quantum internet , 2004, CCRV.

[42]  S. Hewitt,et al.  1982 , 1982, Qatar 1975/76-2019.

[43]  C. Elliott Building the quantum network* , 2002 .

[44]  Wolfgang Dür,et al.  A quantum network stack and protocols for reliable entanglement-based networks , 2018, New Journal of Physics.

[45]  Julio A. de Oliveira Filho,et al.  A link layer protocol for quantum networks , 2019, SIGCOMM.

[46]  D. Gottesman,et al.  Longer-baseline telescopes using quantum repeaters. , 2011, Physical review letters.

[47]  Dong He,et al.  Satellite-based entanglement distribution over 1200 kilometers , 2017, Science.

[48]  Isaac L. Chuang,et al.  Quantum Computation and Quantum Information (10th Anniversary edition) , 2011 .

[49]  Shor,et al.  Scheme for reducing decoherence in quantum computer memory. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[50]  R. Cleve,et al.  HOW TO SHARE A QUANTUM SECRET , 1999, quant-ph/9901025.

[51]  Ran Raz,et al.  Exponential separation of quantum and classical communication complexity , 1999, STOC '99.

[52]  Wolfgang Dür,et al.  Quantum Repeaters: The Role of Imperfect Local Operations in Quantum Communication , 1998 .

[53]  Peter C. Humphreys,et al.  Deterministic delivery of remote entanglement on a quantum network , 2017, Nature.

[54]  S. Hewitt,et al.  2008 , 2018, Los 25 años de la OMC: Una retrospectiva fotográfica.

[55]  Ekert,et al.  "Event-ready-detectors" Bell experiment via entanglement swapping. , 1993, Physical review letters.

[56]  Gilles Brassard,et al.  Quantum cryptography: Public key distribution and coin tossing , 2014, Theor. Comput. Sci..

[57]  R. Cleve,et al.  SUBSTITUTING QUANTUM ENTANGLEMENT FOR COMMUNICATION , 1997, quant-ph/9704026.