Magnetic field investigation of the Venus plasma environment: Expected new results from Venus Express

Abstract The Venus Express mission is scheduled for launch in 2005. Among many other instruments, it carries a magnetometer to investigate the Venus plasma environment. Although Venus has no intrinsic magnetic moment, magnetic field measurements are essential in studying the solar wind interaction with Venus. Our current understanding of the solar wind interaction with Venus is mainly from the long lasting Pioneer Venus Orbiter (PVO) observations. In this paper, we briefly describe the magnetic field experiment of the Venus Express mission. We compare Venus Express mission with PVO mission with respect to the solar wind interaction with Venus. Then we discuss what we will achieve with the upcoming Venus Express mission.

[1]  J. Phillips,et al.  The magnetosheath and magnetotail of Venus , 1991 .

[2]  M. Maggi,et al.  The Analyser of Space Plasmas and Energetic Atoms (ASPERA-4) for the Venus Express mission , 2007 .

[3]  Joe Zender,et al.  Venus Express science planning , 2006 .

[4]  C. Russell,et al.  Growth and maintenance of large-scale magnetic fields in the dayside Venus ionosphere , 1984 .

[5]  N. F. Ness,et al.  Reply to a paper on the use of two magnetometers for magnetic field measurements on a spacecraft , 1971 .

[6]  C. Russell,et al.  Lightning detection on the Venus Express mission , 2006 .

[7]  J. Spreiter,et al.  Solar wind flow past Venus: Theory and comparisons , 1980 .

[8]  C. Russell,et al.  Proton cyclotron waves at Mars and Venus , 2006 .

[9]  H. Rosenbauer,et al.  Unusually Distant Bow Shock Encounters at Mars: Analysis of March 24, 1989 Event , 2004 .

[10]  Helmut Lammer,et al.  Loss of hydrogen and oxygen from the upper atmosphere of Venus , 2006 .

[11]  J. Luhmann Pervasive Large-Scale Magnetic Fields in the Venus Nightside Ionosphere and Their Implications , 1992 .

[12]  M. Delva,et al.  Upstream ULF fluctuations near Mars , 1998 .

[13]  C. Russell,et al.  Magnetic field and plasma wave observations in a plasma cloud at Venus , 1982 .

[14]  A. Kliore,et al.  Solar cycle changes in the ionization sources of the nightside Venus ionosphere , 1987 .

[15]  D. Mitchell,et al.  Magnetic field draping enhancement at the Martian magnetic pileup boundary from Mars global surveyor observations , 2003 .

[16]  C. Russell,et al.  The solar wind interaction with Venus - Pioneer Venus observations of bow shock location and structure , 1980 .

[17]  C. Russell,et al.  Solar and interplanetary control of the location of the Venus bow shock , 1988 .

[18]  Janet G. Luhmann,et al.  Magnetic field near Venus: A comparison between Pioneer Venus Orbiter magnetic field observations and an MHD simulation , 1998 .

[19]  Janet G. Luhmann,et al.  An observational study of the nightside ionospheres of Mars and Venus with radio occultation methods , 1990 .

[20]  Thomas E. Cravens,et al.  Titan's induced magnetosphere , 2004 .

[21]  M. Kivelson,et al.  A variable cross-section model of the bow shock of Venus , 1994 .

[22]  C. Russell The Venus bow shock: Detached or attached? , 1977 .

[23]  Janet G. Luhmann,et al.  A post-pioneer Venus reassessment of the Martian dayside ionosphere as observed by radio occultation methods , 1990 .

[24]  C. Russell,et al.  Pioneer Venus Orbiter Fluxgate Magnetometer , 1980, IEEE Transactions on Geoscience and Remote Sensing.

[25]  C. Russell,et al.  THE INTERACTION OF THE SOLAR WIND WITH VENUS , 1983, Venus.

[26]  Venus lightning. , 1991, Science.

[27]  H. Lichtenegger,et al.  Atmospheric and water loss from early Venus , 2006 .

[28]  Christopher T. Russell,et al.  Characteristics of the Marslike limit of the Venus‐solar wind interaction , 1987 .

[29]  C. Russell,et al.  Venus O + pickup ions: Collected PVO results and expectations for Venus Express , 2006 .

[30]  C. Russell,et al.  Upstream waves at Mars: Phobos observations , 1990 .

[31]  L. H. Brace,et al.  The Structure of the Venus Ionosphere , 1991 .

[32]  C. Russell,et al.  Solar wind deceleration at Mars and Earth: A comparison , 1997 .

[33]  H. Shinagawa,et al.  Global hybrid simulation of the Kelvin–Helmholtz instability at the Venus ionopause , 2002 .

[34]  H. Rosenbauer,et al.  Study of the solar wind deceleration upstream of the Martian terminator bow shock , 1997 .

[35]  C. Russell,et al.  A study of the solar wind deceleration in the Earth's foreshock region , 1995 .

[36]  J. Luhmann,et al.  Magnetic fields in the ionosphere of Venus , 1991 .

[37]  C. Russell,et al.  The solar cycle dependence of the location and shape of the Venus bow shock , 1990 .

[38]  L. H. Brace,et al.  Plasma clouds above the ionopause of Venus and their implications , 1982 .

[39]  C. Russell,et al.  The magnetic barrier at Venus , 1991 .