Analysis of some available heat transfer coefficients applicable to solar chimney power plant collectors

Abstract A solar chimney power plant consists of a translucent collector which heats the air near the ground and guides it into the base of a chimney at its centre. The buoyant air rises in the chimney and electricity is generated through one or more turbines in or near the base of the chimney. Various studies about solar chimney power plant performance have been published. Different calculation approaches with a variety of considerations have been applied to calculate chimney power plant performance. In particular, two comprehensive studies are relevant, namely those of (Bernardes, M.A.d. S., Vos, A., Weinrebe, G., 2003. Thermal and technical analyses of solar chimneys. Solar Energy 75, 511–524; Pretorius, J.P., Kroger, D.G., 2006b. Solar chimney power plant performance. Transactions of the ASME 128, 302–311). The paper compares the methods used to calculate the heat fluxes in the collector, and their effects on solar chimney performance. Reasons for the discrepancies between the predictions of the two models are given. In general the Pretorius model produces higher heat transfer coefficients and higher heat rate fluxes for both the roof and for the ground surfaces. The two approaches lead to very similar air temperature rises in the collector and thus, similar produced power.

[1]  Detlev G. Kröger,et al.  Critical evaluation of solar chimney power plant performance , 2006 .

[2]  Marco Burger,et al.  Prediction of the temperature distribution in asphalt pavement samples , 2005 .

[3]  Detlev G. Kröger,et al.  Solar Chimney Power Plant Performance , 2006 .

[4]  Johannes Petrus Pretorius,et al.  Optimization and control of a large-scale solar chimney power plant , 2007 .

[5]  T. W. von Backström,et al.  Comparison of modelling approaches and layouts for solar chimney turbines , 2008 .

[6]  T. W. von Backström,et al.  Solar chimney turbine characteristics , 2004 .

[7]  Johannes Petrus Pretorius,et al.  Solar Tower Power Plant Performance Characteristics , 2004 .

[8]  M. A. dos S. Bernardes,et al.  Thermal and technical analyses of solar chimneys , 2003 .

[9]  Richard Anthony Hedderwick,et al.  Performance Evaluation of a Solar Chimney Power Plant. , 2000 .

[10]  Ramon Molina Valle,et al.  Technical feasibility assessment of a solar chimney for food drying , 2008 .

[11]  Theodor W. von Backström,et al.  Maximum fluid power condition in solar chimney power plants - An analytical approach , 2006 .

[12]  D. G. Kröger,et al.  Air-cooled heat exchangers and cooling towers , 2005 .

[13]  Theodor W. von Backström,et al.  Solar Chimney cycle analysis with system loss and solar collector performance. , 2000 .

[14]  H. D. Baehr,et al.  Wärme- und Stoffübertragung , 1994 .

[15]  Santos Bernardes,et al.  Technische, ökonomische und ökologische Analyse von Aufwindkraftwerken , 2004 .

[16]  Neven Ninić,et al.  Available energy of the air in solar chimneys and the possibility of its ground-level concentration , 2006 .

[17]  J. Lloyd,et al.  Natural Convection Adjacent to Horizontal Surface of Various Planforms , 1974 .

[18]  Atit Koonsrisuk,et al.  Dynamic similarity in solar chimney modeling , 2007 .

[19]  A. Balouktsis,et al.  Modeling of the optimum tilt of a solar chimney for maximum air flow , 2008 .