A posteriori error estimates for some model boundary control problems

In this paper, we derive a posteriori error estimates for the finite element approximation of quadratic optimal boundary control problems. We derive a posteriori error estimates for both the state and the control approximation on polygonal domains. Such estimates, which are apparently not available in the literature, can be used to construct reliable adaptive finite element approximation schemes for the control problems.

[1]  L. R. Scott,et al.  Finite element interpolation of nonsmooth functions satisfying boundary conditions , 1990 .

[2]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[3]  Donald A. French,et al.  Approximation of an elliptic control problem by the finite element method , 1991 .

[4]  W. Alt On the approximation of infinite optimization problems with an application to optimal control problems , 1984 .

[5]  Avner Friedman,et al.  Optimal control for variational inequalities , 1986 .

[6]  J. Lions Optimal Control of Systems Governed by Partial Differential Equations , 1971 .

[7]  Wenbin Liu,et al.  A Posteriori Error Estimators for a Class of Variational Inequalities , 2000, J. Sci. Comput..

[8]  Piergiorgio Alotto,et al.  Mesh adaption and optimization techniques in magnet design , 1996 .

[9]  Greg Knowles,et al.  Finite Element Approximation of Parabolic Time Optimal Control Problems , 1982 .

[10]  Fredi Tröltzsch,et al.  Error estimates for the discretization of state constrained convex control problems , 1996 .

[11]  Rüdiger Verfürth A Posteriori Error Estimates for Non-Linear Problems , 1994 .

[12]  Wenbin Liu,et al.  A Posteriori Error Estimates for Distributed Convex Optimal Control Problems , 2001, Adv. Comput. Math..

[13]  J. L. Lions,et al.  Control of Systems Governed by Parabolic Partial Differential Equations , 1971 .

[14]  Fredi Tröltzsch,et al.  Semidiscrete Ritz-Galerkin approximation of nonlinear parabolic boundary control problems—Strong convergence of optimal controls , 1994 .

[15]  T. Geveci,et al.  On the approximation of the solution of an optimal control problem governed by an elliptic equation , 1979 .

[16]  L. Steven Hou,et al.  Analysis and finite element approximation of an optimal control problem in electrochemistry with current density controls , 1995 .

[17]  R. Verfürth A posteriori error estimators for the Stokes equations , 1989 .

[18]  R. Bank,et al.  Some a posteriori error estimators for elliptic partial differential equations , 1985 .

[19]  J. E. Rubio,et al.  Optimality conditions for strongly monotone variational inequalities , 1993 .

[20]  R. Verfürth A posteriori error estimates for nonlinear problems: finite element discretizations of elliptic equations , 1994 .

[21]  K. Malanowski Convergence of approximations vs. regularity of solutions for convex, control-constrained optimal-control problems , 1982 .

[22]  John W. Barrett,et al.  Error bounds for the finite element approximation of a degenerate quasilinear parabolic variational inequality , 1993, Adv. Comput. Math..

[23]  Richard S. Falk,et al.  Approximation of a class of optimal control problems with order of convergence estimates , 1973 .

[24]  R. S. Falk Error estimates for the approximation of a class of variational inequalities , 1974 .

[25]  W. E. Bosarge,et al.  The Ritz-Galerkin procedure for parabolic control problems , 1973 .

[26]  J. Tinsley Oden,et al.  Local a posteriori error estimators for variational inequalities , 1993 .

[27]  Claes Johnson,et al.  ADAPTIVE FINITE ELEMENT METHODS FOR THE OBSTACLE PROBLEM , 1992 .

[28]  Ralf Kornhuber,et al.  A posteriori error estimates for elliptic variational inequalities , 1996 .

[29]  I. Lasiecka Ritz–Galerkin Approximation of the Time Optimal Boundary Control Problem for Parabolic Systems with Dirichlet Boundary Conditions , 1984 .

[30]  J. Haslinger,et al.  Finite Element Approximation for Optimal Shape Design: Theory and Applications , 1989 .

[31]  Jianxin Zhou,et al.  Constrained LQR Problems in Elliptic Distributed Control Systems with Point Observations , 1996 .

[32]  P. Neittaanmäki,et al.  Optimal Control of Nonlinear Parabolic Systems: Theory: Algorithms and Applications , 1994 .

[33]  Ricardo G. Durán,et al.  On the asymptotic exactness of error estimators for linear triangular finite elements , 1991 .

[34]  R. Glowinski,et al.  Numerical Analysis of Variational Inequalities , 1981 .

[35]  O. Pironneau Optimal Shape Design for Elliptic Systems , 1983 .

[36]  Ricardo H. Nochetto,et al.  Pointwise accuracy of a finite element method for nonlinear variational inequalities , 1989 .