기계학습과 사전을 이용한 개체명 세분화

개체명 인식은 효과적인 정보추출 시스템을 구축하기 위해 반드시 선행되어야 하는 작업이다. 지금까지의 개체명 인식에 관한 연구는 인명이나 조직, 장소와 같은 일반적인 개체명 인식 작업이 대부분이었다. 그러나, 효과적인 정보추출을 위해서는 이런 일반적인 개체명들을 더욱 세분화할 필요가 있다. 본 논문에서는 SVM기반 기계학습법과 기구축된 사전과의 편집거리 비교법을 이용하여 개체명을 세분화하는 방법을 제시한다. 실험은 개체명과 세분화된 범주가 부착된 공연 관련 문서 100개 중 80개는 학습집합, 20개는 실험집합으로 사용하였고 성능 평가 척도는 정확도(accuracy)를 이용해 개별적으로 평가하였다. 실험 결과 기계학습법과 사전을 이용한 방법을 결합한 모델이 가장 좋은 성능(정확도 72.91%)을 보였다.