The current advances in new generation X-ray sources are calling for the development and improvement of high-performance optics. Techniques for high-sensitivity phase sensing and wavefront characterisation, preferably performed at-wavelength, are increasingly required for quality control, optimisation and development of such devices. We here show that the recently proposed unified modulated pattern analysis (UMPA) can be used for these purposes. We characterised two polymer X-ray refractive lenses and quantified the effect of beam damage and shape errors on their refractive properties. Measurements were performed with two different setups for UMPA and validated with conventional X-ray grating interferometry. Due to its adaptability to different setups, the ease of implementation and cost-effectiveness, we expect UMPA to find applications for high-throughput quantitative optics characterisation and wavefront sensing. Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI. OCIS codes: (120.0120) Instrumentation, measurement, and metrology; (340.0340) X-ray optics; (110.7440) X-ray imaging; (180.7460) X-ray microscopy. References and links 1. M. Eriksson and J. F. van der Veen, eds., Special issue on Diffraction-Limited Storage Rings and New Science Opportunities (J. Synchrotron Radiat., 2014), Vol. 21. 2. K. Ueda, ed., Special issue on X-Ray Free-Electron Laser (Appl. Sci., 2017), Vol. 7. 3. D. Malacara, ed., Optical Shop Testing (Roberts & Company, 1992), Chap. 1. 4. P. Hariharan, “Interferometric testing of optical surfaces: absolute measurements of flatness,” Opt. Eng. 36(9), 2478–2481 (1997). 5. P. Z. Takacs, S.-N. Qian, and J. Colbert, “Design of a long trace surface profiler,” Proc. SPIE 0749, 59–64 (1987). 6. F. Siewert, T. Noll, T. Schlegel, T. Zeschke, and H. Lammert, “The nanometer optical component measuring machine: a new sub-nm topography measuring device for x-ray optics at BESSY,” AIP Conf. Proc. 705(1), 847–850 (2004). 7. F. Siewert, J. Buchheim, T. Zeschke, M. Störmer, G. Falkenberg, and R. Sankari, “On the characterization of ultra-precise x-ray optical components: advances and challenges in ex situ metrology,” J. Synchrotron Radiat. 21(5), Vol. 26, No. 4 | 19 Feb 2018 | OPTICS EXPRESS 4989 #315291 https://doi.org/10.1364/OE.26.004989 Journal © 2018 Received 8 Dec 2017; revised 5 Feb 2018; accepted 7 Feb 2018; published 16 Feb 2018 968–975 (2014). 8. J. Hartmann, “Bemerkungen über den Bau und die Justierung von Spektrographen,” Z. Instrumentenkd. 20, 47 (1900). 9. R. V. Shack and B. C. Platt, “Production and use of a lenticular Hartmann screen,” J. Opt. Soc. Am. 61, 656 (1971). 10. B. Flöter, P. Juranić, S. Kapitzki, B. Keitel, K. Mann, E. Plönjes, B. Schäfer, and K. Tiedtke, “EUV Hartmann sensor for wavefront measurements at the free-electron LASer in Hamburg,” New J. Phys. 12(8), 083015 (2010). 11. B. Flöter, P. Juranić, P. Großmann, S. Kapitzki, B. Keitel, K. Mann, E. Plönjes, B. Schäfer, and K. Tiedkte, “Beam parameters of FLASH beamline BL1 from Hartmann wavefront measurements,” Nucl. Instr. Meth. Phys. Res. A 635(1, Supplement), S108–S112 (2011). 12. S. C. Mayo and B. Sexton, “Refractive microlens array for wave-front analysis in the medium to hard x-ray range,” Opt. Lett. 29(8), 866–868 (2004). 13. M. Idir, P. Mercere, M. H. Modi, G. Dovillaire, X. Levecq, S. Bucourt, L. Escolano, and P. Sauvageot, “X-ray active mirror coupled with a Hartmann wavefront sensor,” Nucl. Instr. Meth. Phys. Res. A 616(2), 162–171 (2010). 14. C. M. Kewish, M. Guizar-Sicairos, C. Liu, J. Qian, B. Shi, C. Benson, A. M. Khounsary, J. Vila-Comamala, O. Bunk, J. R. Fienup, A. T. Macrander, and L. Assoufid, “Reconstruction of an astigmatic hard x-ray beam and alignment of K-B mirrors from ptychographic coherent diffraction data,” Opt. Express 18(22), 23420–23427 (2010). 15. J. Vila-Comamala, A. Diaz, M. Guizar-Sicairos, A. Mantion, C. M. Kewish, A. Menzel, O. Bunk, and C. David, “Characterization of high-resolution diffractive x-ray optics by ptychographic coherent diffractive imaging,” Opt. Express 19(22), 21333–21344 (2011). 16. T. Weitkamp, B. Nöhammer, A. Diaz, C. David, and E. Ziegler, “X-ray wavefront analysis and optics characterization with a grating interferometer,” Appl. Phys. Lett. 86(5), 054101 (2005). 17. M. Engelhardt, J. Baumann, M. Schuster, C. Kottler, F. Pfeiffer, O. Bunk, and C. David, “Inspection of refractive x-ray lenses using high-resolution differential phase contrast imaging with a microfocus x-ray source,” Rev. Sci. Instrum. 78(9), 093707 (2007). 18. A. Diaz, C. Mocuta, J. Stangl, M. Keplinger, T. Weitkamp, F. Pfeiffer, C. David, T. H. Metzger, and G. Bauer, “Coherence and wavefront characterization of Si-111 monochromators using double-grating interferometry,” J. Synchrotron Radiat. 17(3), 299–307 (2010). 19. H. Wang, K. Sawhney, S. Berujon, E. Ziegler, S. Rutishauser, and C. David, “X-ray wavefront characterization using a rotating shearing interferometer technique,” Opt. Express 19(17), 16550–16559 (2011). 20. S. Berujon and E. Ziegler, “Grating-based at-wavelength metrology of hard x-ray reflective optics,” Opt. Lett. 37(21), 4464–4466 (2012). 21. Y. Kayser, C. David, U. Flechsig, J. Krempasky, V. Schlott, and R. Abela, “X-ray grating interferometer for in situ and at-wavelength wavefront metrology,” J. of Synchrotron Radiat. 24(1), 150–162 (2017). 22. S. Rutishauser, I. Zanette, T. Weitkamp, T. Donath, and C. David, “At-wavelength characterization of refractive x-ray lenses using a two-dimensional grating interferometer,” Appl. Phys. Lett. 99(22), 221104 (2011). 23. H. Wang, S. Berujon, and K. Sawhney, “Characterization of a one dimensional focusing compound refractive lens using the rotating shearing interferometer technique,” AIP Conf. Proc. 1466(1), 223–228 (2012). 24. H. Wang, S. Berujon, and K. Sawhney, “Development of at-wavelength metrology using grating-based shearing interferometry at Diamond Light Source,” J. Phys. Conf. Ser. 425(5), 052021 (2013). 25. F. J. Koch, C. Detlefs, T. J. Schröter, D. Kunka, A. Last, and J. Mohr, “Quantitative characterization of x-ray lenses from two fabrication techniques with grating interferometry,” Opt. Express 24(9), 9168–9177 (2016). 26. I. Zanette, T. Weitkamp, T. Donath, S. Rutishauser, and C. David, “Two-dimensional x-ray grating interferometer,” Phys. Rev. Lett. 105(24), 248102 (2010). 27. H. H. Wen, E. E. Bennett, R. Kopace, A. F. Stein, and V. Pai, “Single-shot x-ray differential phase-contrast and diffraction imaging using two-dimensional transmission gratings,” Opt. Lett. 35(12), 1932–1934 (2010). 28. K. S. Morgan, P. Modregger, S. C. Irvine, S. Rutishauser, V. A. Guzenko, M. Stampanoni, and C. David, “A sensitive x-ray phase contrast technique for rapid imaging using a single phase grid analyzer,” Opt. Lett. 38(22), 4605–4608 (2013). 29. K. S. Morgan, D. M. Paganin, and K. K. W. Siu, “X-ray phase imaging with a paper analyzer,” Appl. Phys. Lett. 100(12), 124102 (2012). 30. S. Berujon, H. Wang, and K. Sawhney, “X-ray multimodal imaging using a random-phase object,” Phys. Rev. A 86(6), 063813 (2012). 31. S. Berujon, H. Wang, and K. Sawhney, “At-wavelength metrology using the x-ray speckle tracking technique: case study of a x-ray compound refractive lens,” J. Phys. Conf. Ser. 425(5), 052020 (2013). 32. S. Berujon, H. Wang, S. Alcock, and K. Sawhney, “At-wavelength metrology of hard x-ray mirror using near field speckle,” Opt. Express 22(6), 6438–6446 (2014). 33. S. Berujon, E. Ziegler, and P. Cloetens, “X-ray pulse wavefront metrology using speckle tracking,” J. Synchrotron Radiat. 22(4), 886–894 (2015). 34. H. Wang, Y. Kashyap, D. Laundy, and K. Sawhney, “Two-dimensional in situ metrology of x-ray mirrors using the speckle scanning technique,” J. Synchrotron Radiat. 22(4), 925–929 (2015). 35. H. Wang, Y. Kashyap, and K. Sawhney, “Speckle based x-ray wavefront sensing with nanoradian angular sensitivity,” Opt. Express 23(18), 23310–23317 (2015). 36. H. Wang, J. Sutter, and K. Sawhney, “Advanced in situ metrology for x-ray beam shaping with super precision,” Opt. Vol. 26, No. 4 | 19 Feb 2018 | OPTICS EXPRESS 4990
[1]
Arndt Last,et al.
X-ray Phase-Contrast Imaging and Metrology through Unified Modulated Pattern Analysis.
,
2017,
Physical review letters.
[2]
Rafael Abela,et al.
X-ray grating interferometer for in situ and at-wavelength wavefront metrology.
,
2017,
Journal of synchrotron radiation.
[3]
Kawal Sawhney,et al.
Development of a speckle-based portable device for in situ metrology of synchrotron X-ray mirrors
,
2016,
Journal of synchrotron radiation.
[4]
K. Sawhney,et al.
Speckle-based at-wavelength metrology of X-ray mirrors with super accuracy.
,
2016,
The Review of scientific instruments.
[5]
J. Mohr,et al.
Quantitative characterization of X-ray lenses from two fabrication techniques with grating interferometry.
,
2016,
Optics express.
[6]
Kawal Sawhney,et al.
Speckle based X-ray wavefront sensing with nanoradian angular sensitivity.
,
2015,
Optics express.
[7]
Kawal Sawhney,et al.
Two-dimensional in situ metrology of X-ray mirrors using the speckle scanning technique
,
2015,
Journal of synchrotron radiation.
[8]
Eric Ziegler,et al.
X-ray pulse wavefront metrology using speckle tracking
,
2015,
Journal of synchrotron radiation.
[9]
Sebastien Berujon,et al.
At-wavelength metrology of hard X-ray mirror using near field speckle.
,
2014,
Optics express.
[10]
C. David,et al.
A sensitive x-ray phase contrast technique for rapid imaging using a single phase grid analyzer.
,
2013,
Optics letters.
[11]
K. Sawhney,et al.
Development of at-wavelength metrology using grating-based shearing interferometry at Diamond Light Source
,
2013
.
[12]
K. Sawhney,et al.
At-wavelength metrology using the X-ray speckle tracking technique: case study of a X-ray compound refractive lens
,
2013
.
[13]
Sebastien Berujon,et al.
X-ray multimodal imaging using a random-phase object
,
2012
.
[14]
Eric Ziegler,et al.
Grating-based at-wavelength metrology of hard x-ray reflective optics.
,
2012,
Optics letters.
[15]
K. Sawhney,et al.
Characterization of a one dimensional focusing compound refractive lens using the rotating shearing interferometer technique
,
2012
.
[16]
David M. Paganin,et al.
X-ray phase imaging with a paper analyzer
,
2012
.
[17]
C. David,et al.
At-wavelength characterization of refractive x-ray lenses using a two-dimensional grating interferometer
,
2011
.
[18]
Christoph Rau,et al.
Coherent imaging at the Diamond beamline I13
,
2011
.
[19]
Manuel Guizar-Sicairos,et al.
Characterization of high-resolution diffractive X-ray optics by ptychographic coherent diffractive imaging.
,
2011,
Optics express.
[20]
Eric Ziegler,et al.
X-ray wavefront characterization using a rotating shearing interferometer technique.
,
2011,
Optics express.
[21]
Timm Weitkamp,et al.
Two-dimensional x-ray grating interferometer.
,
2010,
Physical review letters.
[22]
Manuel Guizar-Sicairos,et al.
Reconstruction of an astigmatic hard X-ray beam and alignment of K-B mirrors from ptychographic coherent diffraction data.
,
2010,
Optics express.
[23]
Barbara Keitel,et al.
EUV Hartmann sensor for wavefront measurements at the Free-electron LASer in Hamburg
,
2010
.
[24]
Ashley F. Stein,et al.
Single-shot x-ray differential phase-contrast and diffraction imaging using two-dimensional transmission gratings.
,
2010,
Optics letters.
[25]
Xavier Levecq,et al.
X-ray active mirror coupled with a Hartmann wavefront sensor
,
2010
.
[26]
Franz Pfeiffer,et al.
Coherence and wavefront characterization of Si-111 monochromators using double-grating interferometry.
,
2010,
Journal of synchrotron radiation.
[27]
T. Weitkamp,et al.
Transmission hard X-ray microscope with increased view field using planar refractive objectives and condensers made of SU-8 polymer
,
2009
.
[28]
O. Bunk,et al.
Hard-X-ray dark-field imaging using a grating interferometer.
,
2008,
Nature materials.
[29]
Franz Pfeiffer,et al.
Inspection of refractive X-ray lenses using high-resolution differential phase contrast imaging with a microfocus X-ray source.
,
2007,
The Review of scientific instruments.
[30]
T. Weitkamp,et al.
Investigation of phase contrast hard X‐ray microscopy using planar sets of refractive crossed linear parabolic lenses made from SU‐8 polymer
,
2007
.
[31]
O. Bunk,et al.
A two-directional approach for grating based differential phase contrast imaging using hard x-rays.
,
2007,
Optics express.
[32]
Franz Pfeiffer,et al.
X-ray phase imaging with a grating interferometer.
,
2005,
Optics express.
[33]
Timm Weitkamp,et al.
X-ray wavefront analysis and optics characterization with a grating interferometer
,
2005
.
[34]
Anatoly Snigirev,et al.
Fabrication and preliminary testing of X-ray lenses in thick SU-8 resist layers
,
2004
.
[35]
Andrea Somogyi,et al.
Planar sets of cross x-ray refractive lenses from SU-8 polymer
,
2004,
SPIE Optics + Photonics.
[36]
A. Snigirev,et al.
Refractive lenses fabricated by deep SR lithography and LIGA technology for X‐ray energies from 1 keV to 1 MeV
,
2004
.
[37]
T. Zeschke,et al.
The Nanometer Optical Component Measuring Machine: a new Sub-nm Topography Measuring Device for X-ray Optics at BESSY
,
2004
.
[38]
Sheridan C Mayo,et al.
Refractive microlens array for wave-front analysis in the medium to hard x-ray range.
,
2004,
Optics letters.
[39]
A. Heuberger,et al.
Production of separation-nozzle systems for uranium enrichment by a combination of X-ray lithography and galvanoplastics
,
1982,
Naturwissenschaften.
[40]
Irina Snigireva,et al.
Focusing properties of x-ray polymer refractive lenses from SU-8 resist layer
,
2003,
SPIE Optics + Photonics.
[41]
Irina Snigireva,et al.
Imaging by parabolic refractive lenses in the hard X-ray range
,
1999
.
[42]
Parameswaran Hariharan.
Interferometric testing of optical surfaces: absolute measurements of flatness
,
1997
.
[43]
P Cloetens,et al.
Fractional Talbot imaging of phase gratings with hard x rays.
,
1997,
Optics letters.
[44]
B. Lengeler,et al.
A compound refractive lens for focusing high-energy X-rays
,
1996,
Nature.
[45]
Peter Z. Takacs,et al.
Design Of A Long Trace Surface Profiler
,
1987,
Photonics West - Lasers and Applications in Science and Engineering.