Bayesian analysis of transverse signal decay with application to human brain

Transverse relaxation analysis with several signal models has been used extensively to determine tissue and material properties. However, the derivation of corresponding parameter values is notoriously unreliable. We evaluate improvements in the quality of parameter estimation using Bayesian analysis and incorporating the Rician noise model, as appropriate for magnitude MR images.

[1]  W. Hutton,et al.  Exponential Parameter Estimation (in NMR) Using Bayesian Probability Theory , 2005 .

[2]  A. Rollett,et al.  The Monte Carlo Method , 2004 .

[3]  E. Purcell,et al.  Effects of Diffusion on Free Precession in Nuclear Magnetic Resonance Experiments , 1954 .

[4]  O. Bieri,et al.  Quantitative MRI analysis of menisci using biexponential T2* fitting with a variable echo time sequence , 2014, Magnetic resonance in medicine.

[5]  S. Rice Mathematical analysis of random noise , 1944 .

[6]  Anders Kristoffersen,et al.  Estimating non‐gaussian diffusion model parameters in the presence of physiological noise and rician signal bias , 2012, Journal of magnetic resonance imaging : JMRI.

[7]  Ping-Chang Lin,et al.  Mapping proteoglycan‐bound water in cartilage: Improved specificity of matrix assessment using multiexponential transverse relaxation analysis , 2010, Magnetic resonance in medicine.

[8]  T. Bayes An essay towards solving a problem in the doctrine of chances , 2003 .

[9]  Michael Stuart,et al.  Understanding Robust and Exploratory Data Analysis , 1984 .

[10]  T. Coates,et al.  Improved R2* measurements in myocardial iron overload , 2006, Journal of magnetic resonance imaging : JMRI.

[11]  G. Larry Bretthorst,et al.  On the use of bayesian probability theory for analysis of exponential decay date: An example taken from intravoxel incoherent motion experiments , 1993, Magnetic resonance in medicine.

[12]  Mark K Transtrum,et al.  Why are nonlinear fits to data so challenging? , 2009, Physical review letters.

[13]  J. Sijbers,et al.  Maximum likelihood estimation of signal amplitude and noise variance from MR data , 2004, Magnetic resonance in medicine.

[14]  G Larry Bretthorst,et al.  Modeling water diffusion anisotropy within fixed newborn primate brain using Bayesian probability theory , 2006, Magnetic resonance in medicine.

[15]  Manuel Graña,et al.  Model‐based analysis of multishell diffusion MR data for tractography: How to get over fitting problems , 2012, Magnetic resonance in medicine.

[16]  Anthony Traboulsee,et al.  Complementary information from multi-exponential T 2 relaxation and diffusion tensor imaging reveals differences between multiple sclerosis lesions , 2008, NeuroImage.

[17]  K. Marshall,et al.  Macromolecule and water magnetization exchange modeling in articular cartilage , 2000, Magnetic resonance in medicine.

[18]  G. Bydder,et al.  Ultrashort echo time spectroscopic imaging (UTESI): an efficient method for quantifying bound and free water , 2012, NMR in biomedicine.

[19]  A. MacKay,et al.  Are mono‐exponential fits to a few echoes sufficient to determine T2 relaxation for in vivo human brain? , 1999, Magnetic resonance in medicine.

[20]  S. F.R.,et al.  An Essay towards solving a Problem in the Doctrine of Chances . By the late Rev . Mr . Bayes , communicated by Mr . Price , in a letter to , 1999 .

[21]  Kevin P. Murphy,et al.  Machine learning - a probabilistic perspective , 2012, Adaptive computation and machine learning series.

[22]  Jiang Du,et al.  Qualitative and quantitative ultrashort‐TE MRI of cortical bone , 2013, NMR in biomedicine.

[23]  D. Pennell,et al.  Myocardial T  2* measurements in iron‐overloaded thalassemia: An in vivo study to investigate optimal methods of quantification , 2008, Magnetic resonance in medicine.

[24]  J Sijbers,et al.  Estimation of the noise in magnitude MR images. , 1998, Magnetic resonance imaging.

[25]  Optimized quantification of diffusional non‐gaussianity in the human brain , 2013, Journal of magnetic resonance imaging : JMRI.

[26]  Rajiv Midha,et al.  Is multicomponent T2 a good measure of myelin content in peripheral nerve? , 2003, Magnetic resonance in medicine.

[27]  H. Saunders,et al.  Probability, Random Variables and Stochastic Processes (2nd Edition) , 1989 .

[28]  Peter A Hardy,et al.  Calculating T2 in images from a phased array receiver , 2009, Magnetic resonance in medicine.

[29]  I. J. Day On the inversion of diffusion NMR data: Tikhonov regularization and optimal choice of the regularization parameter. , 2011, Journal of magnetic resonance.

[30]  Derek K. Jones,et al.  “Squashing peanuts and smashing pumpkins”: How noise distorts diffusion‐weighted MR data , 2004, Magnetic resonance in medicine.

[31]  Dmitriy A Yablonskiy,et al.  Optimal decay rate constant estimates from phased array data utilizing joint Bayesian analysis. , 2009, Journal of magnetic resonance.

[32]  Yanqiu Feng,et al.  Rapid look‐up table method for noise‐corrected curve fitting in the r2* mapping of iron loaded liver , 2015, Magnetic resonance in medicine.

[33]  Hisham A Alhadlaq,et al.  Orientational dependence of T2 relaxation in articular cartilage: A microscopic MRI (μMRI) study , 2002, Magnetic resonance in medicine.

[34]  Bayesian Analysis for Quantitative NMR Flow and Diffusion Imaging , 1995 .

[35]  G. L. Bretthorst Bayesian analysis. I. Parameter estimation using quadrature NMR models , 1990 .

[36]  E. L. Lehmann,et al.  Theory of point estimation , 1950 .

[37]  Shannon H Kolind,et al.  One component? Two components? Three? The effect of including a nonexchanging “free” water component in multicomponent driven equilibrium single pulse observation of T1 and T2 , 2013, Magnetic resonance in medicine.

[38]  T. Mareci,et al.  On random walks and entropy in diffusion‐weighted magnetic resonance imaging studies of neural tissue , 2014, Magnetic resonance in medicine.

[39]  F. A. Seiler,et al.  Numerical Recipes in C: The Art of Scientific Computing , 1989 .

[40]  Cheng Guan Koay,et al.  Analytically exact correction scheme for signal extraction from noisy magnitude MR signals. , 2006, Journal of magnetic resonance.

[41]  H. Gudbjartsson,et al.  The rician distribution of noisy mri data , 1995, Magnetic resonance in medicine.

[42]  J. Boire,et al.  T2 maximum likelihood estimation from multiple spin‐echo magnitude images , 1996, Magnetic resonance in medicine.

[43]  S. Haker,et al.  On high b diffusion imaging in the human brain: ruminations and experimental insights. , 2009, Magnetic resonance imaging.

[44]  David Atkinson,et al.  Bayesian estimation of pharmacokinetic parameters for DCE-MRI with a robust treatment of enhancement onset time. , 2007, Physics in medicine and biology.

[45]  G. Weiss,et al.  Optimal time spacings for T2 measurements: monoexponential and biexponential systems , 1998, NMR in biomedicine.

[46]  D. Üstündaǧ,et al.  Recovering Sinusoids from Noisy Data Using Bayesian Inference with Simulated Annealing , 2011 .

[47]  W. Perman,et al.  Improved detectability in low signal-to-noise ratio magnetic resonance images by means of a phase-corrected real reconstruction. , 1989, Medical physics.

[48]  R. Spencer,et al.  Improved specificity of cartilage matrix evaluation using multiexponential transverse relaxation analysis applied to pathomimetically degraded cartilage , 2011, NMR in biomedicine.

[49]  Juan Trujillo,et al.  Anomalous NMR relaxation in cartilage matrix components and native cartilage: fractional-order models. , 2011, Journal of magnetic resonance.

[50]  B. Mädler,et al.  Insights into brain microstructure from the T2 distribution. , 2006, Magnetic resonance imaging.

[51]  P. Laplace Memoir on the Probability of the Causes of Events , 1986 .

[52]  K. Fishbein,et al.  Multicomponent T2 relaxation analysis in cartilage , 2009, Magnetic resonance in medicine.

[53]  W. Edelstein,et al.  A signal-to-noise calibration procedure for NMR imaging systems. , 1984, Medical physics.

[54]  N. Shah,et al.  Non-Gaussian Diffusion Imaging for Enhanced Contrast of Brain Tissue Affected by Ischemic Stroke , 2014, PloS one.

[55]  S. Meiboom,et al.  Modified Spin‐Echo Method for Measuring Nuclear Relaxation Times , 1958 .

[56]  Gary Box,et al.  Bayesian estimation of changes in transverse relaxation rates , 2010, Magnetic resonance in medicine.

[57]  Edwin T. Jaynes Prior Probabilities , 2010, Encyclopedia of Machine Learning.

[58]  D. Louis Collins,et al.  Robust Rician noise estimation for MR images , 2010, Medical Image Anal..

[59]  Stephan E Maier,et al.  Biexponential parameterization of diffusion and T2 relaxation decay curves in a rat muscle edema model: Decay curve components and water compartments , 2005, Magnetic resonance in medicine.

[60]  Jan Sijbers,et al.  Segmentation Based Noise Variance Estimation from Background MRI Data , 2010, ICIAR.

[61]  M. Smith,et al.  An unbiased signal-to-noise ratio measure for magnetic resonance images. , 1993, Medical physics.

[62]  Olaf Dietrich,et al.  T2 measurement in articular cartilage: Impact of the fitting method on accuracy and precision at low SNR , 2009, Magnetic resonance in medicine.

[63]  Qing Ji,et al.  Multi‐slice myelin water imaging for practical clinical applications at 3.0 T , 2013, Magnetic Resonance in Medicine.

[64]  T. Barrick,et al.  From diffusion‐weighted MRI to anomalous diffusion imaging , 2008, Magnetic resonance in medicine.

[65]  W. Hutton,et al.  Exponential model selection (in NMR) using Bayesian probability theory , 2005 .

[66]  E. McVeigh,et al.  Signal-to-noise measurements in magnitude images from NMR phased arrays , 1997, Proceedings of the 19th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. 'Magnificent Milestones and Emerging Opportunities in Medical Engineering' (Cat. No.97CH36136).

[67]  Marco Palombo,et al.  The γ parameter of the stretched-exponential model is influenced by internal gradients: validation in phantoms. , 2012, Journal of magnetic resonance.

[68]  Carl-Fredrik Westin,et al.  Noise and Signal Estimation in Magnitude MRI and Rician Distributed Images: A LMMSE Approach , 2008, IEEE Transactions on Image Processing.

[69]  K. Fishbein,et al.  Stabilization of the inverse Laplace transform of multiexponential decay through introduction of a second dimension. , 2013, Journal of magnetic resonance.

[70]  L. D. Hall,et al.  Optimisation of T2 and M0 measurements of bi-exponential systems. , 2004, Magnetic resonance imaging.

[71]  Timothy Edward John Behrens,et al.  A Bayesian framework for global tractography , 2007, NeuroImage.

[72]  O. Karlsen,et al.  Parameter estimation from Rician‐distributed data sets using a maximum likelihood estimator: Application to t1 and perfusion measurements , 1999, Magnetic resonance in medicine.

[73]  Jonathan A. Jones,et al.  Optimal Sampling Strategies for the Measurement of Spin–Spin Relaxation Times , 1996 .

[74]  S. J. Payne A Bayesian approach for the estimation of model parameters from noisy data sets , 2005, IEEE Signal Processing Letters.

[75]  J. Hyde,et al.  Characterization of continuously distributed cortical water diffusion rates with a stretched‐exponential model , 2003, Magnetic resonance in medicine.

[76]  D. Pennell,et al.  Improved MRI R2* relaxometry of iron‐loaded liver with noise correction , 2013, Magnetic resonance in medicine.

[77]  H. O. Posten Multidimensional Gaussian Distributions , 1964 .

[78]  Jimmy Lee,et al.  Reproducibility of myelin water fraction analysis: a comparison of region of interest and voxel-based analysis methods. , 2009, Magnetic resonance imaging.

[79]  Jean-Marie Bonny,et al.  Incorporation of rician noise in the analysis of biexponential transverse relaxation in cartilage using a multiple gradient echo sequence at 3 and 7 tesla , 2015, Magnetic resonance in medicine.

[80]  Marvin H. J. Guber Bayesian Spectrum Analysis and Parameter Estimation , 1988 .

[81]  Kevin D. Harkins,et al.  In-vivo multi-exponential T2, magnetization transfer and quantitative histology in a rat model of intramyelinic edema☆☆☆ , 2013, NeuroImage: Clinical.