Late-stage stitching enabled by manganese-catalyzed C─H activation: Peptide ligation and access to cyclopeptides

Earth-abundant manganese catalyst enabled the expedient synthesis of cyclic peptides via activation of inert C─H bonds. Bioorthogonal late-stage diversification of structurally complex peptides bears enormous potential for drug discovery and molecular imaging. Despite major accomplishments, these strategies heavily rely on noble-metal catalysis. Herein, we report on a manganese(I)-catalyzed peptide C─H hydroarylation that enabled the stitching of peptidic and sugar fragments, under exceedingly mild and racemization-free conditions. This convergent approach represents an atom-economical alternative to traditional iterative peptide synthesis. The robustness of the manganese(I) catalysis regime is reflected by the full tolerance of a plethora of sensitive functional groups. Our strategy enabled an expedient access to challenging cyclic peptides by a modular late-stage macrocyclization of structurally complex peptides.

[1]  Wangjian Sheng,et al.  Late‐Stage Peptide Macrocyclization by Palladium‐Catalyzed Site‐Selective C−H Olefination of Tryptophan , 2020, Angewandte Chemie.

[2]  Wangjian Sheng,et al.  Late-Stage Peptide Macrocyclization via Palladium-Catalyzed Site-selective C-H Olefination of Tryptophan. , 2020, Angewandte Chemie.

[3]  Magnus J. Johansson,et al.  Cobalt-catalysed C–H methylation for late-stage drug diversification , 2020, Nature Chemistry.

[4]  Ivan V. Buslov,et al.  Protein-Protein Cross-Coupling via Palladium-Protein Oxidative Addition Complexes from Cysteine Residues. , 2020, Journal of the American Chemical Society.

[5]  L. Ackermann,et al.  Late-stage C(sp2)–H and C(sp3)–H glycosylation of C-aryl/alkyl glycopeptides: mechanistic insights and fluorescence labeling†‡ , 2020, Chemical science.

[6]  L. Ackermann Metalla-electrocatalyzed C-H Activation by Earth-Abundant 3d Metals and Beyond. , 2019, Accounts of chemical research.

[7]  Scott J. Miller,et al.  Co(III)-Catalyzed C-H Amidation of Dehydroalanine for the Site-Selective Structural Diversification of Thiostrepton. , 2019, Angewandte Chemie.

[8]  Warren B. Cross,et al.  C-H Olefination of Tryptophan Residues in Peptides: Control of Residue Selectivity and Peptide-Amino Acid Cross-linking. , 2019, Organic letters.

[9]  L. Ackermann,et al.  Enantioselective C-H Activation with Earth-Abundant 3d Transition Metals. , 2019, Angewandte Chemie.

[10]  L. Ackermann,et al.  Late-stage peptide C–H alkylation for bioorthogonal C–H activation featuring solid phase peptide synthesis , 2019, Nature Communications.

[11]  T. Vorherr,et al.  Late-Stage Functionalization of Peptides and Cyclopeptides Using Organozinc Reagents. , 2019, Angewandte Chemie.

[12]  A. Yudin,et al.  Heteroaryl Rings in Peptide Macrocycles. , 2019, Chemical reviews.

[13]  Zhijie Chen,et al.  Construction of Natural-Product-Like Cyclophane-Braced Peptide Macrocycles via sp3 C-H Arylation. , 2019, Journal of the American Chemical Society.

[14]  H. Itoh,et al.  Comprehensive Structure-Activity Relationship Studies of Macrocyclic Natural Products Enabled by Their Total Syntheses. , 2019, Chemical reviews.

[15]  L. Ackermann,et al.  Late-Stage Diversification through Manganese-Catalyzed C-H Activation: Access to Acyclic, Hybrid, and Stapled Peptides. , 2019, Angewandte Chemie.

[16]  T. Müller,et al.  3d Transition Metals for C-H Activation. , 2018, Chemical reviews.

[17]  A. Kapdi,et al.  Late-Stage Peptide Diversification by Position-Selective C-H Activation. , 2018, Angewandte Chemie.

[18]  H. Kessler,et al.  Orally Active Peptides: Is There a Magic Bullet? , 2018, Angewandte Chemie.

[19]  Jian Tang,et al.  Peptide-guided functionalization and macrocyclization of bioactive peptidosulfonamides by Pd(II)-catalyzed late-stage C–H activation , 2018, Nature Communications.

[20]  M. Rueping,et al.  Rhenium‐ and Manganese‐Catalyzed Selective Alkenylation of Indoles , 2018 .

[21]  Bing‐Feng Shi,et al.  Site-Selective δ-C(sp3 )-H Alkylation of Amino Acids and Peptides with Maleimides via a Six-Membered Palladacycle. , 2018, Angewandte Chemie.

[22]  G. He,et al.  A general strategy for synthesis of cyclophane-braced peptide macrocycles via palladium-catalysed intramolecular sp3 C−H arylation , 2018, Nature Chemistry.

[23]  Anthony Wood,et al.  Organic synthesis provides opportunities to transform drug discovery , 2018, Nature Chemistry.

[24]  Yuanyuan Hu,et al.  Inert C-H Bond Transformations Enabled by Organometallic Manganese Catalysis. , 2018, Accounts of chemical research.

[25]  L. Ackermann,et al.  Internal Peptide Late-Stage Diversification: Peptide-Isosteric Triazoles for Primary and Secondary C(sp3 )-H Activation. , 2018, Angewandte Chemie.

[26]  M. Poss,et al.  Palladium(II)-Catalyzed Site-Selective C(sp3 )-H Alkynylation of Oligopeptides: A Linchpin Approach for Oligopeptide-Drug Conjugation. , 2017, Angewandte Chemie.

[27]  E. Manoni,et al.  Manganese-Catalyzed C-H Alkynylation: Expedient Peptide Synthesis and Modification. , 2017, Angewandte Chemie.

[28]  L. Ackermann,et al.  Bioorthogonal Diversification of Peptides through Selective Ruthenium(II)-Catalyzed C-H Activation. , 2017, Angewandte Chemie.

[29]  Bing‐Feng Shi,et al.  Site-Selective Alkenylation of δ-C(sp(3))-H Bonds with Alkynes via a Six-Membered Palladacycle. , 2016, Journal of the American Chemical Society.

[30]  L. Ackermann,et al.  Manganese(I)-Catalyzed Substitutive C-H Allylation. , 2016, Angewandte Chemie.

[31]  L. Ackermann,et al.  Manganese-Catalyzed C–H Activation , 2016 .

[32]  Alexander M. Spokoyny,et al.  Organometallic Palladium Reagents for Cysteine Bioconjugation , 2015, Nature.

[33]  jin-quan yu Ligand‐Enabled β‐C—H Arylation of α‐Amino Acids Using a Simple and Practical Auxiliary. , 2015 .

[34]  F. Albericio,et al.  New peptide architectures through C–H activation stapling between tryptophan–phenylalanine/tyrosine residues , 2015, Nature Communications.

[35]  W. Gong,et al.  Site-Selective C(sp3)–H Functionalization of Di-, Tri-, and Tetrapeptides at the N-Terminus , 2014, Journal of the American Chemical Society.

[36]  Yuanfu Deng,et al.  Ruthenium(II)-catalyzed direct addition of indole/pyrrole C2-H bonds to alkynes. , 2014, The Journal of organic chemistry.

[37]  G. He,et al.  Palladium-catalyzed trifluoroacetate-promoted mono-arylation of the β-methyl group of alanine at room temperature: synthesis of β-arylated α-amino acids through sequential C–H functionalization , 2014 .

[38]  M. Brimble,et al.  C-H functionalization in the synthesis of amino acids and peptides. , 2014, Chemical reviews.

[39]  Jillian E. Spangler,et al.  Ligand-Controlled C(sp3)–H Arylation and Olefination in Synthesis of Unnatural Chiral α–Amino Acids , 2014, Science.

[40]  L. Ackermann Carboxylate-assisted ruthenium-catalyzed alkyne annulations by C-H/Het-H bond functionalizations. , 2014, Accounts of chemical research.

[41]  G. He,et al.  Stereoselective Synthesis of β-Alkylated α-Amino Acids via Palladium-Catalyzed Alkylation of Unactivated Methylene C(sp3)—H Bonds with Primary Alkyl Halides. , 2014 .

[42]  F. Albericio,et al.  Synthesis of C-2 arylated tryptophan amino acids and related compounds through palladium-catalyzed C-H activation. , 2013, The Journal of organic chemistry.

[43]  L. Tran,et al.  Nonnatural amino acid synthesis by using carbon-hydrogen bond functionalization methodology. , 2012, Angewandte Chemie.

[44]  F. Albericio,et al.  Postsynthetic modification of peptides: chemoselective C-arylation of tryptophan residues. , 2010, Chemistry.

[45]  Gong Chen,et al.  Total synthesis of celogentin C by stereoselective C-H activation. , 2010, Angewandte Chemie.

[46]  E. Corey,et al.  Novel acetoxylation and C-C coupling reactions at unactivated positions in alpha-amino acid derivatives. , 2006, Organic letters.