Identical synchronization, with translation invariance, implies parameter estimation

If a real system and its perfect model (with identical parameters) can be made to synchronize identically, then for an imperfect model of a real system with some unknown parameters, one can design a parameter estimation law, so that all parameters of the real system can be estimated from the model. While the information needed to implement the law is not available in all cases, sufficient information is generally available for a PDE system that possesses translational symmetry if some of the relevant state variables are known at the discrete set of points (or for the finite set of Fourier components) that are coupled to the model. Parameter estimation is illustrated for a geophysical fluid dynamics model.

[1]  Amritkar,et al.  Dynamic algorithm for parameter estimation and its applications , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[2]  Joseph Tribbia,et al.  Weak Atlantic–Pacific Teleconnections as Synchronized Chaos , 2004 .

[3]  Debin Huang Synchronization-based estimation of all parameters of chaotic systems from time series. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[4]  C. Grebogi,et al.  Using geometric control and chaotic synchronization to estimate an unknown model parameter. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[5]  H. Sakaguchi Parameter evaluation from time sequences using chaos synchronization. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[6]  J. Tribbia,et al.  Synchronized chaos in geophysical fluid dynamics. , 2001, Physical review letters.

[7]  Aiguo Wu,et al.  Comment on "Estimating model parameters from time series by autosynchronization". , 2005, Physical review letters.

[8]  Carroll,et al.  Synchronization in chaotic systems. , 1990, Physical review letters.

[9]  Eugenia Kalnay,et al.  Atmospheric Modeling, Data Assimilation and Predictability , 2002 .

[10]  Steven H. Strogatz,et al.  Sync: The Emerging Science of Spontaneous Order , 2003 .

[11]  Parlitz,et al.  Estimating model parameters from time series by autosynchronization. , 1996, Physical review letters.

[12]  Hong Li,et al.  Data Assimilation as Synchronization of Truth and Model: Experiments with the Three-Variable Lorenz System* , 2006 .

[13]  R. Daley Atmospheric Data Analysis , 1991 .

[14]  Ljupco Kocarev,et al.  Synchronizing Spatiotemporal Chaos of Partial Differential Equations , 1997 .

[15]  Parlitz,et al.  Synchronization-based parameter estimation from time series. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[16]  Jeffrey B. Weiss,et al.  Synchronicity in predictive modelling: a new view of data assimilation , 2006 .