Efficient Bayesian inference for long memory processes

In forecasting problems it is important to know whether or not recent events represent a regime change (low long-term predictive potential), or rather a local manifestation of longer term effects (potentially higher predictive potential). Mathematically, a key question is about whether the underlying stochastic process exhibits "memory", and if so whether the memory is "long" in a precise sense. Being able to detect or rule out such effects can have a profound impact on speculative investment (e.g., in financial markets) and inform public policy (e.g., characterising the size and timescales of the earth system's response to the anthropogenic CO2 perturbation). Most previous work on inference of long memory effects is frequentist in nature. Here we provide a systematic treatment of Bayesian inference for long memory processes via the Autoregressive Fractional Integrated Moving Average (ARFIMA) model. In particular, we provide a new approximate likelihood for efficient parameter inference, and show how nuisance parameters (e.g., short memory effects) can be integrated over in order to focus on long memory parameters and hypothesis testing more directly than ever before. We illustrate our new methodology on both synthetic and observational data, with favorable comparison to the standard estimators.

[1]  Jan Beran Long‐Memory Processes , 2013 .

[2]  J. R. Wallis,et al.  Noah, Joseph, and Operational Hydrology , 1968 .

[3]  Nalini Ravishanker,et al.  Bayesian analysis of autoregressive fractionally integrated moving‐average processes , 1998 .

[4]  C. Peng,et al.  Mosaic organization of DNA nucleotides. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[5]  J. Geweke,et al.  THE ESTIMATION AND APPLICATION OF LONG MEMORY TIME SERIES MODELS , 1983 .

[6]  P. Green Reversible jump Markov chain Monte Carlo computation and Bayesian model determination , 1995 .

[7]  Robert B. Gramacy,et al.  A brief history of long memory , 2014 .

[8]  A. Raftery,et al.  Space-time modeling with long-memory dependence: assessing Ireland's wind-power resource. Technical report , 1987 .

[9]  Gary Koop,et al.  Bayesian Analysis of Long Memory and Persistence using ARFIMA Models , 1995 .

[10]  Jan Beran,et al.  On a class of M-estimators for Gaussian long-memory models , 1994 .

[11]  T. Hothorn,et al.  Multivariate Normal and t Distributions , 2016 .

[12]  Sounak Chakraborty,et al.  A Bayesian approach to estimating the long memory parameter , 2009 .

[13]  J. Rosenthal,et al.  Optimal scaling for various Metropolis-Hastings algorithms , 2001 .

[14]  Gennady Samorodnitsky,et al.  Long Range Dependence , 2007, Found. Trends Stoch. Syst..

[15]  S.M. Kay,et al.  Spectrum analysis—A modern perspective , 1981, Proceedings of the IEEE.

[16]  Jan Beran,et al.  Statistics for long-memory processes , 1994 .

[17]  H. E. Hurst,et al.  Long-Term Storage Capacity of Reservoirs , 1951 .

[18]  N. Ravishanker,et al.  Bayesian Analysis of ARMA Processes: Complete Sampling Based Inference Under Full Likelihoods , 1996 .

[19]  C. Robert Simulation of truncated normal variables , 2009, 0907.4010.

[20]  A. I. McLeod,et al.  Algorithms for Linear Time Series Analysis: With R Package , 2007 .

[21]  Marina Vannucci,et al.  Bayesian wavelet analysis of autoregressive fractionally integrated moving-average processes , 2006 .

[22]  Gwilym M. Jenkins,et al.  Time series analysis, forecasting and control , 1971 .

[23]  B. Mandelbrot,et al.  Fractional Brownian Motions, Fractional Noises and Applications , 1968 .

[24]  J. Monahan A note on enforcing stationarity in autoregressive-moving average models , 1984 .

[25]  Brunero Liseo,et al.  Bayesian semiparametric inference on long-range dependence , 2001 .

[26]  C. Granger,et al.  AN INTRODUCTION TO LONG‐MEMORY TIME SERIES MODELS AND FRACTIONAL DIFFERENCING , 1980 .

[27]  Nan-Jung Hsu,et al.  Bayesian analysis of fractionally integrated ARMA with additive noise , 2003 .

[28]  A. Doucet,et al.  Reversible Jump Markov Chain Monte Carlo Strategies for Bayesian Model Selection in Autoregressive Processes , 2004, Journal of Time Series Analysis.

[29]  Christian Franzke,et al.  Nonlinear Trends, Long-Range Dependence, and Climate Noise Properties of Surface Temperature , 2012 .

[30]  Richard A. Davis,et al.  Time Series: Theory and Methods , 2013 .

[31]  Erol Egrioglu,et al.  Bayesian model selection in ARFIMA models , 2010, Expert Syst. Appl..

[32]  C. Hurvich,et al.  On the Correlation Matrix of the Discrete Fourier Transform and the Fast Solution of Large Toeplitz Systems for Long-Memory Time Series , 2004 .

[33]  Murad S. Taqqu,et al.  Theory and applications of long-range dependence , 2003 .

[34]  Timothy Graves,et al.  Robustness of estimators of long-range dependence and self-similarity under non-Gaussianity , 2011, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[35]  R. K. Adenstedt,et al.  On Large-Sample Estimation for the Mean of a Stationary Random Sequence , 1974 .

[36]  Stephen P. Brooks,et al.  Adaptive Proposal Construction for Reversible Jump MCMC , 2008 .

[37]  Wilfredo Palma,et al.  Long-memory time series , 2007 .

[38]  N. Watkins,et al.  Bunched black (and grouped grey) swans: Dissipative and non‐dissipative models of correlated extreme fluctuations in complex geosystems , 2013 .

[39]  C. Granger The typical spectral shape of an economic variable , 1966 .

[40]  Kyungduk Ko,et al.  Bayesian Wavelet-Based Methods for the Detection of Multiple Changes of the Long Memory Parameter , 2006, IEEE Transactions on Signal Processing.