Function of phosphorylation of NF-kB p65 ser536 in prostate cancer oncogenesis

Majority of prostate cancer (PCa) patients carry TMPRSS2/ERG (T/E) fusion genes and there has been tremendous interest in understanding how the T/E fusion may promote progression of PCa. We showed that T/E fusion can activate NF-kB pathway by increasing phosphorylation of NF-kB p65 Ser536 (p536), but the function of p536 has never been studied in PCa. We report here that active p536 can significantly increase cell motility and transform PNT1a cells (an immortalized normal cell line), suggesting p536 plays a critical role in promoting PCa tumorigenesis. We have discovered a set of p536 regulated genes, among which we validated the regulation of CCL2 by p536. Based on all evidence, we favor that T/E fusion, NF-kB p536 and CCL2 form a signaling chain. Finally, PNT1a cells (not tumorigenic) can form tumors in SCID mice when overexpressing of either wild type or active p65 in the presence of activated AKT, demonstrating synergistic activities of NF-kB and AKT signals in promoting PCa tumorigenesis. These findings indicate that combination therapies targeting T/E fusion, NF-kB, CCL2 and/or AKT pathways may have efficacy in T/E fusion gene expressing PCa. If successful, such targeted therapy will benefit more than half of PCa patients who carry T/E fusions.

[1]  C. Kleer,et al.  Altered receptor trafficking in Huntingtin Interacting Protein 1-transformed cells. , 2003, Cancer cell.

[2]  K. Pienta,et al.  CCL2 Protects Prostate Cancer PC3 Cells from Autophagic Death via Phosphatidylinositol 3-Kinase/AKT-dependent Survivin Up-regulation* , 2008, Journal of Biological Chemistry.

[3]  K. Pienta,et al.  A destructive cascade mediated by CCL2 facilitates prostate cancer growth in bone. , 2009, Cancer research.

[4]  O. Cussenot,et al.  Recurrent cytogenetic alterations of prostate carcinoma and amplification of c‐myc or epidermal growth factor receptor in subclones of immortalized pnt1 human prostate epithelial cell line , 1995, International journal of cancer.

[5]  J. Inoue,et al.  NF‐κB activation in development and progression of cancer , 2007 .

[6]  Pingfu Fu,et al.  Nuclear factor-kappaB/p65 (Rel A) is constitutively activated in human prostate adenocarcinoma and correlates with disease progression. , 2004, Neoplasia.

[7]  I. Panagopoulos,et al.  Confirmation of the high frequency of the TMPRSS2/ERG fusion gene in prostate cancer , 2006 .

[8]  K. Pienta,et al.  CC chemokine ligand 2 (CCL2) promotes prostate cancer tumorigenesis and metastasis. , 2010, Cytokine & growth factor reviews.

[9]  Toby Lawrence,et al.  IKKα limits macrophage NF-κB activation and contributes to the resolution of inflammation , 2005, Nature.

[10]  R. Eeles,et al.  Diversity of TMPRSS2-ERG fusion transcripts in the human prostate , 2007, Oncogene.

[11]  M. Ittmann,et al.  Pleiotropic biological activities of alternatively spliced TMPRSS2/ERG fusion gene transcripts. , 2008, Cancer research.

[12]  M. Schmitz,et al.  Constitutive and interleukin-1-inducible phosphorylation of p65 NF-{kappa}B at serine 536 is mediated by multiple protein kinases including I{kappa}B kinase (IKK)-{alpha}, IKK{beta}, IKK{epsilon}, TRAF family member-associated (TANK)-binding kinase 1 (TBK1), and an unknown kinase and couples p65 to , 2004, The Journal of biological chemistry.

[13]  N. Colburn,et al.  Suppression of p65 phosphorylation coincides with inhibition of IkappaBalpha polyubiquitination and degradation. , 2005, Molecular carcinogenesis.

[14]  D. Longo,et al.  Phosphorylation of RelA/p65 on Serine 536 Defines an IκBα-independent NF-κB Pathway* , 2005, Journal of Biological Chemistry.

[15]  H. Pahl,et al.  Activators and target genes of Rel/NF-kappaB transcription factors. , 1999, Oncogene.

[16]  R. Matusik,et al.  The nuclear factor-kappaB pathway controls the progression of prostate cancer to androgen-independent growth. , 2008, Cancer research.

[17]  P. Nelson,et al.  A Three-Marker FISH Panel Detects More Genetic Aberrations of AR, PTEN and TMPRSS2/ERG in Castration-Resistant or Metastatic Prostate Cancers than in Primary Prostate Tumors , 2013, PloS one.

[18]  R. Matusik,et al.  NF-κB gene signature predicts prostate cancer progression. , 2014, Cancer research.

[19]  D. Longo,et al.  Phosphorylation of RelA/p65 on serine 536 defines an I{kappa}B{alpha}-independent NF-{kappa}B pathway. , 2005, The Journal of biological chemistry.

[20]  Tien-Huang Lin,et al.  CCL2 increases αvβ3 integrin expression and subsequently promotes prostate cancer migration. , 2013, Biochimica et biophysica acta.

[21]  I. Mellinghoff,et al.  Progression of prostate cancer by synergy of AKT with genotropic and nongenotropic actions of the androgen receptor , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[22]  M. Merville,et al.  Phosphorylation of NF-kappaB and IkappaB proteins: implications in cancer and inflammation. , 2005, Trends in biochemical sciences.

[23]  湯智昕,et al.  CCL2 increases alpha v bets3 integrin expression and subsequently promotes prostate cancer migration , 2013 .

[24]  Y Pawitan,et al.  TMPRSS2:ERG gene fusion associated with lethal prostate cancer in a watchful waiting cohort , 2007, Oncogene.

[25]  M. Ittmann,et al.  FGF17 is an autocrine prostatic epithelial growth factor and is upregulated in benign prostatic hyperplasia , 2004, The Prostate.

[26]  Hongyun Wang,et al.  ERG induces androgen receptor-mediated regulation of SOX9 in prostate cancer. , 2013, The Journal of clinical investigation.

[27]  S. Balk,et al.  Reactivation of androgen receptor-regulated TMPRSS2:ERG gene expression in castration-resistant prostate cancer. , 2009, Cancer research.

[28]  G. Bartsch,et al.  CCL2 promotes integrin-mediated adhesion of prostate cancer cells in vitro , 2015, World Journal of Urology.

[29]  Michael Ittmann,et al.  Expression of variant TMPRSS2/ERG fusion messenger RNAs is associated with aggressive prostate cancer. , 2006, Cancer research.

[30]  S. Yadav,et al.  Recent insights into NF‐κB signalling pathways and the link between inflammation and prostate cancer , 2014, BJU international.

[31]  M. Ittmann,et al.  The Fibroblast Growth Factor Receptor-4 Arg388 Allele Is Associated with Prostate Cancer Initiation and Progression , 2004, Clinical Cancer Research.

[32]  J. Inoue,et al.  NF-kappaB activation in development and progression of cancer. , 2007, Cancer science.

[33]  R. Henrique,et al.  TMPRSS2-ERG gene fusion causing ERG overexpression precedes chromosome copy number changes in prostate carcinomas and paired HGPIN lesions. , 2006, Neoplasia.

[34]  Toby Lawrence,et al.  IKKalpha limits macrophage NF-kappaB activation and contributes to the resolution of inflammation. , 2005, Nature.

[35]  O. Witte,et al.  The Sca-1 cell surface marker enriches for a prostate-regenerating cell subpopulation that can initiate prostate tumorigenesis. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[36]  Matthew J. Craig,et al.  CCL2 as an important mediator of prostate cancer growth in vivo through the regulation of macrophage infiltration. , 2007, Neoplasia.

[37]  M. Merville,et al.  Phosphorylation of NF-κB and IκB proteins: implications in cancer and inflammation , 2005 .

[38]  H. Pahl Activators and target genes of Rel/NF-κB transcription factors , 1999, Oncogene.

[39]  O. Ludkovski,et al.  Absence of TMPRSS2:ERG fusions and PTEN losses in prostate cancer is associated with a favorable outcome , 2008, Modern Pathology.

[40]  N. Colburn,et al.  Insufficient p65 phosphorylation at S536 specifically contributes to the lack of NF-kappaB activation and transformation in resistant JB6 cells. , 2004, Carcinogenesis.

[41]  I. Panagopoulos,et al.  Confirmation of the high frequency of the TMPRSS2/ERG fusion gene in prostate cancer. , 2006, Genes, chromosomes & cancer.

[42]  J. Moy,et al.  Stimulus‐specific regulation of chemokine expression involves differential activation of the redox‐responsive transcription factors AP‐1 and NF‐κB , 1999, Journal of leukocyte biology.

[43]  N. Colburn,et al.  Suppression of p65 phosphorylation coincides with inhibition of IκBα polyubiquitination and degradation , 2005 .

[44]  B. Bao,et al.  Inactivation of AR / TMPRSS 2-ERG / Wnt Signaling Networks Attenuates the Aggressive Behavior of Prostate Cancer Cells , 2011 .

[45]  N. Perkins Post-translational modifications regulating the activity and function of the nuclear factor kappa B pathway , 2006, Oncogene.

[46]  M. Ittmann,et al.  GGAP2/PIKE-a directly activates both the Akt and nuclear factor-kappaB pathways and promotes prostate cancer progression. , 2009, Cancer research.

[47]  J. Tchinda,et al.  Recurrent Fusion of TMPRSS2 and ETS Transcription Factor Genes in Prostate Cancer , 2005, Science.

[48]  M. Ittmann,et al.  The prostate cancer TMPRSS2:ERG fusion synergizes with the vitamin D receptor (VDR) to induce CYP24A1 expression-limiting VDR signaling. , 2014, Endocrinology.

[49]  Mazhar Adli,et al.  IKK-i/IKKϵ Controls Constitutive, Cancer Cell-associated NF-κB Activity via Regulation of Ser-536 p65/RelA Phosphorylation* , 2006, Journal of Biological Chemistry.

[50]  P. Möller,et al.  NF-κB signaling in prostate cancer: A promising therapeutic target? , 2012, World Journal of Urology.

[51]  Andrzej Kudlicki,et al.  Modulation of Gene Expression Regulated by the Transcription Factor NF-κB/RelA* , 2014, The Journal of Biological Chemistry.

[52]  W. V. Berghe,et al.  Regulation of the transcriptional activity of the nuclear factor-κB p65 subunit , 2002 .

[53]  J Cuzick,et al.  Duplication of the fusion of TMPRSS2 to ERG sequences identifies fatal human prostate cancer , 2008, Oncogene.

[54]  Matthew J. Craig,et al.  Targeting CCL2 with systemic delivery of neutralizing antibodies induces prostate cancer tumor regression in vivo. , 2007, Cancer research.

[55]  E. Campo,et al.  Activation of nuclear factor-κB in human prostate carcinogenesis and association to biochemical relapse , 2005, British Journal of Cancer.

[56]  A. Sood,et al.  Highly Specific Targeting of the TMPRSS2/ERG Fusion Gene Using Liposomal Nanovectors , 2012, Clinical Cancer Research.

[57]  D. Berney,et al.  Duplication of the fusion of TMPRSS 2 to ERG sequences identifies fatal human prostate cancer , 2009 .

[58]  Adam S. Kibel,et al.  TMPRSS2:ERG gene fusion associated with lethal prostate cancer in a watchful waiting cohort , 2007 .

[59]  B. Bao,et al.  Inactivation of AR/TMPRSS2-ERG/Wnt Signaling Networks Attenuates the Aggressive Behavior of Prostate Cancer Cells , 2011, Cancer Prevention Research.

[60]  E. Corey,et al.  Activation of MCP-1/CCR2 axis promotes prostate cancer growth in bone , 2008, Clinical & Experimental Metastasis.

[61]  N. Palanisamy,et al.  Activation of NF-{kappa}B by TMPRSS2/ERG Fusion Isoforms through Toll-Like Receptor-4. , 2011, Cancer research.

[62]  J. Squire TMPRSS2-ERG and PTEN loss in prostate cancer , 2009, Nature Genetics.

[63]  P. Kantoff,et al.  Inherited Variants in the Chemokine CCL2 Gene and Prostate Cancer Aggressiveness in a Caucasian Cohort , 2010, Clinical Cancer Research.

[64]  J. Tchinda,et al.  Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. , 2006, Science.

[65]  Patricia D. Castro,et al.  Celastrol Suppresses Tumor Cell Growth through Targeting an AR-ERG-NF-κB Pathway in TMPRSS2/ERG Fusion Gene Expressing Prostate Cancer , 2013, PloS one.

[66]  K. Pienta,et al.  CCL2 is a potent regulator of prostate cancer cell migration and proliferation. , 2006, Neoplasia.

[67]  K. Pienta,et al.  Multiple roles of chemokine (C-C motif) ligand 2 in promoting prostate cancer growth. , 2010, Journal of the National Cancer Institute.

[68]  Adrian V. Lee,et al.  Insulin-like growth factor-I activates gene transcription programs strongly associated with poor breast cancer prognosis. , 2008, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[69]  F. Rizzi,et al.  Polyphenon E(R), a standardized green tea extract, induces endoplasmic reticulum stress, leading to death of immortalized PNT1a cells by anoikis and tumorigenic PC3 by necroptosis. , 2014, Carcinogenesis.

[70]  D. Galson,et al.  Monocyte chemotactic protein‐1 (MCP‐1) acts as a paracrine and autocrine factor for prostate cancer growth and invasion , 2006, The Prostate.