A MULTI-DOMAIN SPECTRAL IPDG METHOD FOR HELMHOLTZ EQUATION WITH HIGH WAVE NUMBER *

This paper is concerned with a multi-domain spectral method, based on an interior penalty discontinuous Galerkin (IPDG) formulation, for the exterior Helmholtz problem truncated via an exact circular or spherical Dirichlet-to-Neumann (DtN) boundary condition. An effective iterative approach is proposed to localize the global DtN boundary condition, which facilitates the implementation of multi-domain methods, and the treatment for complex geometry of the scatterers. Under a discontinuous Galerkin formulation, the proposed method allows to use polynomial basis functions of different degree on different subdomains, and more importantly, explicit wave number dependence estimates of the spectral scheme can be derived, which is somehow implausible for a multi-domain continuous Galerkin formulation.

[1]  Jie Shen,et al.  Analysis of a Spectral-Galerkin Approximation to the Helmholtz Equation in Exterior Domains , 2007, SIAM J. Numer. Anal..

[2]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[3]  Fernando Reitich,et al.  Digital Object Identifier (DOI) 10.1007/s002110200399 Analytic continuation of Dirichlet-Neumann operators , 2022 .

[4]  Ivo Babuska,et al.  Finite Element Solution to the Helmholtz Equation with High Wave Number Part II : The hp-version of the FEM , 2022 .

[5]  Leszek F. Demkowicz,et al.  Analysis of a coupled finite-infinite element method for exterior Helmholtz problems , 2001, Numerische Mathematik.

[6]  Leszek Demkowicz,et al.  Solution of 3D-Laplace and Helmholtz equations in exterior domains using hp-infinite elements , 1996 .

[7]  Jie Shen,et al.  A Stable High-Order Method for Two-Dimensional Bounded-Obstacle Scattering , 2006, SIAM J. Sci. Comput..

[8]  L. Milne‐Thomson A Treatise on the Theory of Bessel Functions , 1945, Nature.

[9]  Douglas N. Arnold,et al.  Unified Analysis of Discontinuous Galerkin Methods for Elliptic Problems , 2001, SIAM J. Numer. Anal..

[10]  R. D. Ciskowski,et al.  Boundary element methods in acoustics , 1991 .

[11]  F. Ihlenburg Finite Element Analysis of Acoustic Scattering , 1998 .

[12]  Jie Shen,et al.  A stable, high-order method for three-dimensional, bounded-obstacle, acoustic scattering , 2007, J. Comput. Phys..

[13]  Jie Shen,et al.  A Rigorous Numerical Analysis of the Transformed Field Expansion Method , 2009, SIAM J. Numer. Anal..

[14]  Jens Markus Melenk,et al.  Convergence analysis for finite element discretizations of the Helmholtz equation with Dirichlet-to-Neumann boundary conditions , 2010, Math. Comput..

[15]  Dongwoo Sheen,et al.  FREQUENCY DOMAIN TREATMENT OF ONE-DIMENSIONAL SCALAR WAVES , 1993 .

[16]  Jean-Pierre Berenger,et al.  A perfectly matched layer for the absorption of electromagnetic waves , 1994 .

[17]  Thomas J. R. Hughes,et al.  Analysis of continuous formulations underlying the computation of time-harmonic acoustics in exterior domains , 1992 .

[18]  A. K. Aziz,et al.  On the Numerical Solutions of Helmholtz’s Equation by the Finite Element Method , 1980 .

[19]  Peter Monk,et al.  Wave-Number-Explicit Bounds in Time-Harmonic Scattering , 2008, SIAM J. Math. Anal..

[20]  A. H. Schatz,et al.  An observation concerning Ritz-Galerkin methods with indefinite bilinear forms , 1974 .

[21]  Haijun Wu,et al.  Discontinuous Galerkin Methods for the Helmholtz Equation with Large Wave Number , 2009, SIAM J. Numer. Anal..

[22]  I. Babuska,et al.  Finite element solution of the Helmholtz equation with high wave number Part I: The h-version of the FEM☆ , 1995 .

[23]  Chi-Wang Shu,et al.  Discontinuous Galerkin Methods: Theory, Computation and Applications , 2011 .

[24]  I. Babuska,et al.  Finite Element Solution of the Helmholtz Equation with High Wave Number Part II: The h - p Version of the FEM , 1997 .

[25]  D. Arnold An Interior Penalty Finite Element Method with Discontinuous Elements , 1982 .

[26]  Ivo Babuška,et al.  A Generalized Finite Element Method for solving the Helmholtz equation in two dimensions with minimal pollution , 1995 .

[27]  J. Keller,et al.  Exact non-reflecting boundary conditions , 1989 .

[28]  P. Morse,et al.  Methods of theoretical physics , 1955 .

[29]  Jie Shen,et al.  Spectral Methods: Algorithms, Analysis and Applications , 2011 .

[30]  U. Hetmaniuk Stability estimates for a class of Helmholtz problems , 2007 .

[31]  Haijun Wu,et al.  hp-Discontinuous Galerkin methods for the Helmholtz equation with large wave number , 2008, Math. Comput..

[32]  P. Cummings,et al.  SHARP REGULARITY COEFFICIENT ESTIMATES FOR COMPLEX-VALUED ACOUSTIC AND ELASTIC HELMHOLTZ EQUATIONS , 2006 .

[33]  Jie Shen,et al.  Spectral Approximation of the Helmholtz Equation with High Wave Numbers , 2005, SIAM J. Numer. Anal..

[34]  Gang Bao,et al.  Finite element approximation of time harmonic waves in periodic structures , 1995 .

[35]  J. Nédélec Acoustic and Electromagnetic Equations : Integral Representations for Harmonic Problems , 2001 .

[36]  Stefan A. Sauter,et al.  Is the Pollution Effect of the FEM Avoidable for the Helmholtz Equation Considering High Wave Numbers? , 1997, SIAM Rev..

[37]  Béatrice Rivière,et al.  Discontinuous Galerkin methods for solving elliptic and parabolic equations - theory and implementation , 2008, Frontiers in applied mathematics.