Very high-energy gamma-ray emission beyond 10 TeV from GRB 221009A.

The highest-energy gamma-rays from gamma-ray bursts (GRBs) have important implications for their radiation mechanism. Here we report the detection of gamma-rays up to 13 teraelectronvolts from the brightest GRB 221009A by the Large High Altitude Air-shower Observatory (LHAASO). The LHAASO-KM2A detector registered more than 140 gamma-rays with energies above 3 teraelectronvolts during 230 to 900 seconds after the trigger. The intrinsic energy spectrum of gamma-rays can be described by a power-law after correcting for extragalactic background light absorption. Such a hard spectrum challenges the synchrotron self-Compton scenario of relativistic electrons for the afterglow emission above several teraelectronvolts. Observations of gamma-rays up to 13 teraelectronvolts from a source with a measured redshift of z = 0.151 hints more transparency in intergalactic space than previously expected. Alternatively, one may invoke new physics such as Lorentz invariance violation or an axion origin of very high-energy signals.

Danzengluobu | Axikegu | L. L. Yang | P. Pattarakijwanich | T. Zeng | M. Chen | Xin Li | Y. Chen | D. Semikoz | H. Wu | H. Zhu | F. Zhang | Cheng Li | G. Gong | Y. Hor | Y. Stenkin | S. Gabici | Q. Gou | D. Bastieri | R. Xu | X. Cui | Y. Xin | P. Tam | H. He | W. Mitthumsiri | H. Zhou | G. Xiao | S. Feng | Cong Li | N. Cheng | H. Zhang | M. Heller | A. Neronov | L. Zhao | C. Hou | B. Gao | M. Chen | H. C. Li | L. X. Zhang | B. Qiao | J. Xia | C. Gao | S. Z. Chen | Z. Huang | Q. Sun | G. Giacinti | X. Ji | L. Yin | K. Duan | W. Li | W. Tian | S. Xi | X. He | X. Zhou | F. Zhu | D. Huang | H. Jia | R. Liu | X. Ma | Q. Tang | R. Yang | Z. Yao | S. Zhang | T. Chen | S. M. Liu | H. He | X. G. Wang | X. You | J. Qin | X. Dong | J. Liu | Y. Bi | L. Gao | Zhen Wang | J. Zhou | E. Chen | Y. Bao | C. Feng | H. Hu | W. Liu | S. Zhao | B. Dai | S. Chen | L. Geng | X. Guo | X. Hou | K. Jiang | D. Kuleshov | H. Li | L. Shao | H. Song | V. Stepanov | Z. Sun | L. Wang | S. Wu | G. Xiang | G. Xin | C. Yang | F. Yang | J. Yang | M. Yang | H. Zeng | S. Zhang | F. Zheng | B. Zhou | K. Zhu | J. Fan | Y. He | H. Dai | X. Feng | D. Li | X. Y. Huang | J. Liu | Long Chen | F. Guo | T. Ke | Jian Li | Jie Li | Zhe Li | J. Wei | R. Wang | Q. Cao | Weicang Wang | J. Yan | M. Kang | Y. Bai | X. Bi | J. Cai | W. Gao | K. Jia | B. Li | H. B. Li | Y. Liang | B. Liu | Q. Luo | B. Ma | Z. Pei | C. Shao | L. Y. Wang | D. Xiao | D. Xu | H. W. Yang | N. Yin | Y. Yu | H. Yue | B. Zhang | S. B. Zhang | Yi. Zhang | J. Zhao | J. Fang | W. Cao | Y. Wu | Y. Yao | Q. Gao | H. Zhang | Q. Chen | Z. X. Wang | S. Hu | Z. H. Wang | J. C. Wang | Z. Jiang | X. N. Sun | Y. J. Wang | S. Lin | M. Zhou | T. Q. Huang | Y. Su | R. Xu | L. Feng | R. Zhou | K. Li | O. Shchegolev | Y. Feng | Y. J. Wei | Y. Han | X. Huang | K. Kurinov | Y. Liu | G. W. Wang | H. Wang | H. H. Wang | P. Wang | W. Xu | T. Yan | R. Zhang | J. L. Zhang | Y. Huang | D. Liu | Y. Z. Fan | A. S'aiz | M. Y. Liu | Q. Hu | Y. Q. Guo | Y. Zhang | R. Lu | X. Zhang | Z. Min | L. Ma | K. Wang | M. Gu | F. Li | Z. You | Zhen Cao | F. Aharonian | Q. An | J. Chang | A. M. Chen | Liang Chen | Lin Chen | Y. D. Cheng | M. Cui | S. Cui | Y. Cui | Z. Dai | D. D. Volpe | K. Fang | M. Ge | Y. Y. Guo | J. Y. He | B. Hou | W. J. Huang | X. W. Jiang | M. Jin | J. Li | X. R. Li | Y. Li | Zhuo Li | E. W. Liang | C. Liu | H. Liu | H. Lv | J. Mao | H. Mu | Y. Nan | Z. Ou | B. Pang | M. Qi | Y. Qi | D. Ruffolo | X. Sheng | F. Shu | Z. Tang | C. Wang | X. Y. Wang | Y. Wang | Zhenghan Wang | D. Wei | T. Wen | C. Y. Wu | X. F. Wu | Y. Xing | Z. Xiong | L. Xue | D. H. Yan | S. B. Yang | Y. Ye | Q. Yuan | W. Zeng | M. Zha | Li Zhang | P. Zhang | P. P. Zhang | Yong Zhang | B. Zhao | P. Zhou | C. G. Zhu | X. Zuo

[1]  Y. N. Liu,et al.  A tera–electron volt afterglow from a narrow jet in an extremely bright gamma-ray burst , 2023, Science.

[2]  Chris L. Fryer,et al.  Fermi-GBM Discovery of GRB 221009A: An Extraordinarily Bright GRB from Onset to Afterglow , 2023, The Astrophysical Journal Letters.

[3]  A. Lutovinov,et al.  Properties of the Extremely Energetic GRB 221009A from Konus-WIND and SRG/ART-XC Observations , 2023, The Astrophysical Journal Letters.

[4]  F. Aharonian,et al.  The Formation of Hard Very High Energy Spectra from Gamma-ray Burst Afterglows via Two-zone Synchrotron Self-Compton Emission , 2023, The Astrophysical Journal.

[5]  Ž. Bošnjak,et al.  Multi-messenger Model for the Prompt Emission from GRB 221009A , 2022, The Astrophysical Journal Letters.

[6]  K. Ioka,et al.  External Inverse-compton and Proton Synchrotron Emission from the Reverse Shock as the Origin of VHE Gamma Rays from the Hyper-bright GRB 221009A , 2022, The Astrophysical Journal Letters.

[7]  S. Razzaque,et al.  Ultrahigh-energy cosmic-ray signature in GRB 221009A , 2022, Astronomy & Astrophysics.

[8]  Xinghua Ma Chapter 1 LHAASO Instruments and Detector technology , 2021, Chinese Physics C.

[9]  L. Oakes,et al.  Revealing x-ray and gamma ray temporal and spectral similarities in the GRB 190829A afterglow. , 2021, Science.

[10]  P. Pattarakijwanich,et al.  Performance of LHAASO-WCDA and observation of the Crab Nebula as a standard candle , 2021, Chinese Physics C.

[11]  J. Primack,et al.  An observational determination of the evolving extragalactic background light from the multiwavelength HST/CANDELS survey in the Fermi and CTA era , 2020, Monthly Notices of the Royal Astronomical Society.

[12]  Danzengluobu,et al.  Observation of the Crab Nebula with LHAASO-KM2A − a performance study * , 2020, Chinese Physics C.

[13]  L. A. Antonelli,et al.  Observation of inverse Compton emission from a long γ-ray burst , 2019, Nature.

[14]  P. Munar-Adrover,et al.  Teraelectronvolt emission from the γ-ray burst GRB 190114C , 2019, Nature.

[15]  A. Quirrenbach,et al.  A very-high-energy component deep in the γ-ray burst afterglow , 2019, Nature.

[16]  Bing Zhang,et al.  Synchrotron Self-Compton Emission from External Shocks as the Origin of the Sub-TeV Emission in GRB 180720B and GRB 190114C , 2019, The Astrophysical Journal.

[17]  T. Piran,et al.  The Physical Conditions of the Afterglow Implied by MAGIC’s Sub-TeV Observations of GRB 190114C , 2019, The Astrophysical Journal.

[18]  Heidelberg,et al.  Extragalactic background light : a measurement at 400 nm using dark cloud shadow - II. Spectroscopic separation of the dark cloud's light, and results , 2017, 1705.10790.

[19]  M. J. Pivovaroff,et al.  New CAST limit on the axion–photon interaction , 2017, Nature Physics.

[20]  Min Gyu Kim,et al.  On the origin of near-infrared extragalactic background light anisotropy , 2014, Science.

[21]  G. Lagache,et al.  An accurate measurement of the anisotropies and mean level of the cosmic infrared background at 100 μm and 160 μm , 2011, 1105.1463.

[22]  R. Somerville,et al.  Semi-analytic modeling of the EBL and consequences for extragalactic gamma-ray spectra , 2011, 1104.0671.

[23]  C. Conselice,et al.  Extragalactic background light inferred from AEGIS galaxy-SED-type fractions , 2010, 1103.4534.

[24]  A. Cimatti,et al.  Dissecting the cosmic infra-red background with Herschel/PEP , 2010, 1005.1073.

[25]  H. Aussel,et al.  Spitzer deep and wide legacy mid- and far-infrared number counts and lower limits of cosmic infrared background , 2010, 1001.0896.

[26]  G. Heald,et al.  Magnetic fields in nearby galaxies , 2009, 0911.4012.

[27]  Fermi Gbmlat Collaborations Testing Einstein's special relativity with Fermi's short hard gamma-ray burst GRB090510 , 2009, 0908.1832.

[28]  D. Elbaz,et al.  Spitzer 70 Micron Source Counts in GOODS-North , 2006, astro-ph/0606676.

[29]  E. al.,et al.  Number Counts of GALEX Sources in Far-Ultraviolet (1530 Å) and Near-Ultraviolet (2310 Å) Bands , 2005 .

[30]  Orsay,et al.  The 24 Micron Source Counts in Deep Spitzer Space Telescope Surveys , 2004, astro-ph/0406035.

[31]  E. L. Wright,et al.  Number Counts at 3 μm < λ < 10 μm from the Spitzer Space Telescope , 2004, astro-ph/0405595.

[32]  Cea,et al.  An ISOCAM survey through gravitationally lensing galaxy clusters. I. Source lists and source counts , 2003, astro-ph/0305400.

[33]  David Elbaz,et al.  The Bulk of the Cosmic Infrared Background Resolved by ISOCAM , 2002, astro-ph/0201328.

[34]  F. Aharonian,et al.  On the origin of highest energy gamma-rays from Mkn 501 , 2001, astro-ph/0108419.

[35]  David J. Schlegel,et al.  Detection of a Far-Infrared Excess with DIRBE at 60 and 100 Microns , 2000, astro-ph/0004175.

[36]  A. Fruchter,et al.  The Hubble Deep Field South - STIS Imaging , 1999, astro-ph/9912167.

[37]  R. J. Reynolds,et al.  Evidence for dust emission in the Warm Ionised Medium using WHAM data , 1999, astro-ph/9911355.

[38]  L. Pozzetti,et al.  Deep galaxy counts, extragalactic background light and the stellar baryon budget , 1999, astro-ph/9907315.

[39]  E. al.,et al.  The time averaged TeV energy spectrum of MKN 501 of the extraordinary 1997 outburst as measured with the stereoscopic Cherenkov telescope system of HEGRA , 1999, astro-ph/9903386.

[40]  E. L. Wright,et al.  The COBE Diffuse Infrared Background Experiment Search for the Cosmic Infrared Background. I. Limits and Detections , 1998, astro-ph/9806167.