Sparse Grid Quadrature

This chapter is concerned with sparse grid (SG) quadrature methods. These methods are constructed using certain combinations of tensor products of one-dimensional quadrature rules. They can exploit the smoothness of f, overcome the curse of dimension to a certain extent and profit from low effective dimensions, see, e.g., [16, 44, 45, 57, 116, 146].

[1]  Alan Genz,et al.  A Package for Testing Multiple Integration Subroutines , 1987 .

[2]  Thomas Bonk A New Algorithm for Multi-Dimensional Adaptive Numerical Quadrature , 1994 .

[3]  Henryk Wozniakowski,et al.  Explicit Cost Bounds of Algorithms for Multivariate Tensor Product Problems , 1995, J. Complex..

[4]  K. Ritter,et al.  High dimensional integration of smooth functions over cubes , 1996 .

[5]  A. Genz,et al.  Fully symmetric interpolatory rules for multiple integrals over infinite regions with Gaussian weight , 1996 .

[6]  V. Linetsky The Path Integral Approach to Financial Modeling and Options Pricing , 1998 .

[7]  Henryk Wozniakowski,et al.  When Are Quasi-Monte Carlo Algorithms Efficient for High Dimensional Integrals? , 1998, J. Complex..

[8]  Hans-Joachim Bungartz,et al.  A Note on the Complexity of Solving Poisson's Equation for Spaces of Bounded Mixed Derivatives , 1999, J. Complex..

[9]  Henryk Wozniakowski,et al.  Weighted Tensor Product Algorithms for Linear Multivariate Problems , 1999, J. Complex..

[10]  Leszek Plaskota The exponent of discrepancy of sparse grids is at least 2.1933 , 2000, Adv. Comput. Math..

[11]  Anargyros Papageorgiou,et al.  Faster Evaluation of Multidimensional Integrals , 2000, ArXiv.

[12]  M. Griebel,et al.  Optimized Tensor-Product Approximation Spaces , 2000 .

[13]  Grzegorz W. Wasilkowski,et al.  The Exact Exponent of Sparse Grid Quadratures in the Weighted Case , 2001, J. Complex..

[14]  A. Owen,et al.  Quasi-Regression and the Relative Importance of the ANOVA Components of a Function , 2002 .

[15]  Hans-Joachim Bungartz,et al.  Multivariate Quadrature on Adaptive Sparse Grids , 2003, Computing.

[16]  M. Hegland Adaptive sparse grids , 2003 .

[17]  A. Owen THE DIMENSION DISTRIBUTION AND QUADRATURE TEST FUNCTIONS , 2003 .

[18]  Knut Petras,et al.  Smolyak cubature of given polynomial degree with few nodes for increasing dimension , 2003, Numerische Mathematik.

[19]  Thomas Gerstner,et al.  Dimension–Adaptive Tensor–Product Quadrature , 2003, Computing.

[20]  Åke Björck,et al.  The calculation of linear least squares problems , 2004, Acta Numerica.

[21]  Thomas Gerstner,et al.  Numerical integration using sparse grids , 2004, Numerical Algorithms.

[22]  Ian H. Sloan,et al.  Why Are High-Dimensional Finance Problems Often of Low Effective Dimension? , 2005, SIAM J. Sci. Comput..

[23]  Florian Heiss,et al.  Likelihood approximation by numerical integration on sparse grids , 2008 .

[24]  Michael Griebel,et al.  Dimension-wise integration of high-dimensional functions with applications to finance , 2010, J. Complex..