An EBSD Study of Fatigue Crack Propagation in Bonded Aluminum Wires Cycled from 55°C to 85°C

[1]  Z. Khatir,et al.  Analysis of the aging mechanism occurring at the bond-wire contact of IGBT power devices during power cycling , 2020 .

[2]  R. Khatirkar,et al.  Microstructure and texture development in AA3003 aluminium alloy , 2020, Materials Today Communications.

[3]  F. Iannuzzo,et al.  Comparative study of wire bond degradation under power and mechanical accelerated tests , 2019, Journal of Materials Science: Materials in Electronics.

[4]  K. Hsu,et al.  Microstructure evolution of Al6061 and copper during ultrasonic energy assisted compression , 2019, Materials Characterization.

[5]  Golta Khatibi,et al.  Cyclic robustness of heavy wire bonds: Al, AlMg, Cu and CucorAl , 2018, Microelectron. Reliab..

[6]  Jeffrey Ewanchuk,et al.  Analysis of the degradation mechanisms occurring in the topside interconnections of IGBT power devices during power cycling , 2018, Microelectron. Reliab..

[7]  G. Khatibi,et al.  Accelerated mechanical fatigue interconnect testing method for electrical wire bonds , 2018 .

[8]  R. Khatirkar,et al.  Microstructure and texture development during deformation and recrystallisation in strip cast AA8011 aluminum alloy , 2018 .

[9]  T. N. Baker,et al.  Development of Microstructure and Crystallographic Texture in a Double-Sided Friction Stir Welded Microalloyed Steel , 2017, Metallurgical and Materials Transactions A.

[10]  Elaheh Arjmand,et al.  Damage Evolution in Al Wire Bonds Subjected to a Junction Temperature Fluctuation of 30 K , 2016, Journal of Electronic Materials.

[11]  Golta Khatibi,et al.  Interface reliability and lifetime prediction of heavy aluminum wire bonds , 2016, Microelectron. Reliab..

[12]  K. Suganuma,et al.  Heel crack propagation mechanism of cold-rolled Cu/Al clad ribbon bonding in harsh environment , 2015, Journal of Materials Science: Materials in Electronics.

[13]  Klaus-Dieter Lang,et al.  Microstructural evolution of ultrasonic-bonded aluminum wires , 2015, Microelectron. Reliab..

[14]  C. Mark Johnson,et al.  Reliability of thick Al wire: A study of the effects of wire bonding parameters on thermal cycling degradation rate using non-destructive methods , 2014, Microelectron. Reliab..

[15]  J. Jonas,et al.  Dynamic and post-dynamic recrystallization under hot, cold and severe plastic deformation conditions , 2014 .

[16]  Michael D. Sangid,et al.  The physics of fatigue crack initiation , 2013 .

[17]  Golta Khatibi,et al.  Microstructural Investigation of Interfacial Features in Al Wire Bonds , 2012, Journal of Electronic Materials.

[18]  Li Yang,et al.  Microstructural evolution of ultrasonically bonded high purity Al wire during extended range thermal cycling , 2011, Microelectron. Reliab..

[19]  Golta Khatibi,et al.  Accelerated mechanical fatigue testing and lifetime of interconnects in microelectronics , 2010 .

[20]  P. C. Montgomery,et al.  EBSD analysis of polysilicon films formed by aluminium induced crystallization of amorphous silicon , 2008 .

[21]  F. J. Humphreys,et al.  The application of EBSD to the study of substructural development in a cold rolled single-phase aluminium alloy , 2003 .

[22]  P. Houtte,et al.  Physical parameters related to the developments of recrystallization textures in an ultra low carbon steel , 1998 .

[23]  J. E. Krzanowski,et al.  Deformation and bonding processes in aluminum ultrasonic wire wedge bonding , 1990 .

[24]  W. Hutchinson,et al.  Recrystallisation mechanisms and the origin of cube texture in copper , 1982 .

[25]  M. Senna,et al.  Formation of recrystallization textures in rolled aluminum single crystals , 1975 .