Generalizing the column–row matrix decomposition to multi-way arrays
暂无分享,去创建一个
[1] W. Marsden. I and J , 2012 .
[2] S. Goreinov,et al. How to find a good submatrix , 2010 .
[3] Tamara G. Kolda,et al. Tensor Decompositions and Applications , 2009, SIAM Rev..
[4] Eugene E. Tyrtyshnikov,et al. Breaking the Curse of Dimensionality, Or How to Use SVD in Many Dimensions , 2009, SIAM J. Sci. Comput..
[5] Petros Drineas,et al. CUR matrix decompositions for improved data analysis , 2009, Proceedings of the National Academy of Sciences.
[6] Eugene E. Tyrtyshnikov,et al. Tucker Dimensionality Reduction of Three-Dimensional Arrays in Linear Time , 2008, SIAM J. Matrix Anal. Appl..
[7] S. Goreinov,et al. On cross approximation of multi-index arrays , 2008 .
[8] S. Muthukrishnan,et al. Relative-Error CUR Matrix Decompositions , 2007, SIAM J. Matrix Anal. Appl..
[9] Jimeng Sun,et al. Less is More: Compact Matrix Decomposition for Large Sparse Graphs , 2007, SDM.
[10] E. Tyrtyshnikov. Low-Rank Structures and Tensor Approximations for Huge-Size Data Sets , 2007 .
[11] Petros Drineas,et al. Tensor-CUR decompositions for tensor-based data , 2006, KDD '06.
[12] Tamara G. Kolda,et al. MATLAB Tensor Toolbox , 2006 .
[13] Petros Drineas,et al. FAST MONTE CARLO ALGORITHMS FOR MATRICES III: COMPUTING A COMPRESSED APPROXIMATE MATRIX DECOMPOSITION∗ , 2004 .
[14] Judith M. Ford,et al. Combining Kronecker Product Approximation with Discrete Wavelet Transforms to Solve Dense, Function-Related Linear Systems , 2003, SIAM J. Sci. Comput..
[15] S. Goreinov,et al. The maximum-volume concept in approximation by low-rank matrices , 2001 .
[16] Eugene E. Tyrtyshnikov,et al. Incomplete Cross Approximation in the Mosaic-Skeleton Method , 2000, Computing.
[17] Joos Vandewalle,et al. On the Best Rank-1 and Rank-(R1 , R2, ... , RN) Approximation of Higher-Order Tensors , 2000, SIAM J. Matrix Anal. Appl..
[18] Joos Vandewalle,et al. A Multilinear Singular Value Decomposition , 2000, SIAM J. Matrix Anal. Appl..
[19] G. W. Stewart,et al. Four algorithms for the the efficient computation of truncated pivoted QR approximations to a sparse matrix , 1999, Numerische Mathematik.
[20] S. Goreinov,et al. Pseudo-skeleton approximations by matrices of maximal volume , 1997 .
[21] S. Goreinov,et al. A Theory of Pseudoskeleton Approximations , 1997 .
[22] John J. Bartholdi,et al. A good submatrix is hard to find , 1982, Oper. Res. Lett..
[23] J. Chang,et al. Analysis of individual differences in multidimensional scaling via an n-way generalization of “Eckart-Young” decomposition , 1970 .
[24] Richard A. Harshman,et al. Foundations of the PARAFAC procedure: Models and conditions for an "explanatory" multi-model factor analysis , 1970 .
[25] Peter Lancaster,et al. The theory of matrices , 1969 .
[26] L. Tucker,et al. Some mathematical notes on three-mode factor analysis , 1966, Psychometrika.
[27] C. Harris. Problems in measuring change , 1965 .
[28] Severnyi Kavkaz. Pseudo-Skeleton Approximations by Matrices of Maximal Volume , 2022 .