Bacterial RNA polymerases: the wholo story.

[1]  N. Shimamoto,et al.  Release of the sigma subunit of Escherichia coli DNA-dependent RNA polymerase depends mainly on time elapsed after the start of initiation, not on length of product RNA. , 1986, The Journal of biological chemistry.

[2]  R. Kovacic,et al.  The 0 degree C closed complexes between Escherichia coli RNA polymerase and two promoters, T7-A3 and lacUV5. , 1987, The Journal of biological chemistry.

[3]  H. Buc,et al.  Correlation between the conformation of Escherichia coli −10 hexamer sequences and promoter strength: use of orthophenanthroline cuprous complex as a structural index. , 1988, The EMBO journal.

[4]  C. Gross,et al.  Intermediates in the formation of the open complex by RNA polymerase holoenzyme containing the sigma factor sigma 32 at the groE promoter. , 1989, Journal of molecular biology.

[5]  H. Heumann,et al.  A cinematographic view of Escherichia coli RNA polymerase translocation. , 1989, The EMBO journal.

[6]  H. Heumann,et al.  Topography of intermediates in transcription initiation of E.coli. , 1990, The EMBO journal.

[7]  P. V. von Hippel,et al.  Escherichia coli sigma 70 and NusA proteins. I. Binding interactions with core RNA polymerase in solution and within the transcription complex. , 1991, Journal of molecular biology.

[8]  K. Sharp,et al.  Protein folding and association: Insights from the interfacial and thermodynamic properties of hydrocarbons , 1991, Proteins.

[9]  C. Gross,et al.  Development of RNA polymerase-promoter contacts during open complex formation. , 1991, Journal of molecular biology.

[10]  M. Gribskov,et al.  The sigma 70 family: sequence conservation and evolutionary relationships , 1992, Journal of bacteriology.

[11]  C. Gross,et al.  Polypeptides containing highly conserved regions of transcription initiation factor σ 70 exhibit specificity of binding to promoter DNA , 1992, Cell.

[12]  R. Gourse,et al.  A third recognition element in bacterial promoters: DNA binding by the alpha subunit of RNA polymerase. , 1993, Science.

[13]  P. Dehaseth,et al.  Mutations in sigma factor that affect the temperature dependence of transcription from a promoter, but not from a mismatch bubble in double-stranded DNA. , 1994, Biochemistry.

[14]  J. Helmann,et al.  Genetic and physiological studies of Bacillus subtilis sigma A mutants defective in promoter melting , 1994, Journal of bacteriology.

[15]  J. Helmann,et al.  A promoter melting region in the primary sigma factor of Bacillus subtilis. Identification of functionally important aromatic amino acids. , 1994, Journal of molecular biology.

[16]  W. Suh,et al.  HO. and DNase I probing of E sigma 70 RNA polymerase--lambda PR promoter open complexes: Mg2+ binding and its structural consequences at the transcription start site. , 1995, Biochemistry.

[17]  V. Markovtsov,et al.  Transcription Processivity: Protein-DNA Interactions Holding Together the Elongation Complex , 1996, Science.

[18]  Jeffrey W. Roberts,et al.  Function of E. coli RNA Polymerase σ Factor- σ70 in Promoter-Proximal Pausing , 1996, Cell.

[19]  J. Roberts,et al.  Promoter recognition as measured by binding of polymerase to nontemplate strand oligonucleotide. , 1997, Science.

[20]  T. Gruber,et al.  Molecular systematic studies of eubacteria, using sigma70-type sigma factors of group 1 and group 2 , 1997, Journal of bacteriology.

[21]  S. Busby,et al.  Region 2.5 of the Escherichia coli RNA polymerase σ70 subunit is responsible for the recognition of the ‘extended −10’ motif at promoters , 1997, The EMBO journal.

[22]  J. Gralla,et al.  Promoter opening via a DNA fork junction binding activity. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[23]  S. Darst,et al.  Structure of the Escherichia coli RNA Polymerase α Subunit Amino-Terminal Domain , 1998 .

[24]  C. Gross,et al.  The functional and regulatory roles of sigma factors in transcription. , 1998, Cold Spring Harbor symposia on quantitative biology.

[25]  K. Severinov,et al.  Crystal Structure of Thermus aquaticus Core RNA Polymerase at 3.3 Å Resolution , 1999, Cell.

[26]  Grant J. Jensen,et al.  Yeast RNA Polymerase II at 5 Å Resolution , 1999, Cell.

[27]  T. Steitz,et al.  Structure of a transcribing T7 RNA polymerase initiation complex. , 1999, Science.

[28]  R. Ebright,et al.  Transcription activation by catabolite activator protein (CAP). , 1999, Journal of molecular biology.

[29]  C. Gross,et al.  The interface of sigma with core RNA polymerase is extensive, conserved, and functionally specialized. , 1999, Genes & development.

[30]  E. Geiduschek,et al.  The orientation of DNA in an archaeal transcription initiation complex , 2000, Nature Structural Biology.

[31]  Younggyu Kim,et al.  Structural Organization of the RNA Polymerase-Promoter Open Complex , 2000, Cell.

[32]  S. Darst,et al.  A Structural Model of Transcription Elongation , 2000 .

[33]  R. Ebright RNA polymerase: structural similarities between bacterial RNA polymerase and eukaryotic RNA polymerase II. , 2000, Journal of molecular biology.

[34]  E. V. Makeyev,et al.  A mechanism for initiating RNA-dependent RNA polymerization , 2001, Nature.

[35]  P. Cramer,et al.  Structural Basis of Transcription: RNA Polymerase II at 2.8 Ångstrom Resolution , 2001, Science.

[36]  R. Ebright,et al.  Translocation of σ70 with RNA Polymerase during Transcription Fluorescence Resonance Energy Transfer Assay for Movement Relative to DNA , 2001, Cell.

[37]  S. Darst,et al.  Bacterial RNA polymerase. , 2001, Current opinion in structural biology.

[38]  Arkady Mustaev,et al.  Structural Mechanism for Rifampicin Inhibition of Bacterial RNA Polymerase , 2001, Cell.

[39]  D. Hinton,et al.  Domain 1.1 of the sigma(70) subunit of Escherichia coli RNA polymerase modulates the formation of stable polymerase/promoter complexes. , 2001, Journal of molecular biology.

[40]  E. Nudler,et al.  Isolation and Characterization of σ70-Retaining Transcription Elongation Complexes from Escherichia coli , 2001, Cell.

[41]  R. Ebright,et al.  Bacterial RNA polymerase subunit omega and eukaryotic RNA polymerase subunit RPB6 are sequence, structural, and functional homologs and promote RNA polymerase assembly. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[42]  P. Cramer,et al.  Structural Basis of Transcription: An RNA Polymerase II Elongation Complex at 3.3 Å Resolution , 2001, Science.

[43]  Willy Wriggers,et al.  Conformational flexibility of bacterial RNA polymerase , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[44]  Thomas A. Steitz,et al.  Structural Basis for the Transition from Initiation to Elongation Transcription in T7 RNA Polymerase , 2002, Science.

[45]  K. Murakami,et al.  Structural Basis of Transcription Initiation: RNA Polymerase Holoenzyme at 4 Å Resolution , 2002, Science.

[46]  T. Muir,et al.  Autoregulation of a bacterial σ factor explored by using segmental isotopic labeling and NMR , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[47]  Patrick Cramer,et al.  Multisubunit RNA polymerases. , 2002, Current opinion in structural biology.

[48]  M. Voskuil,et al.  The TRTGn motif stabilizes the transcription initiation open complex. , 2002, Journal of molecular biology.

[49]  M. Record,et al.  Kinetic Studies and Structural Models of the Association of E. coli σ70 RNA Polymerase with the λPR Promoter: Large Scale Conformational Changes in Forming the Kinetically Significant Intermediates , 2002 .

[50]  S. Darst,et al.  Structure of the Bacterial RNA Polymerase Promoter Specificity σ Subunit , 2002 .

[51]  K. Murakami,et al.  Structural Basis of Transcription Initiation: An RNA Polymerase Holoenzyme-DNA Complex , 2002, Science.

[52]  S. Yokoyama,et al.  Structure of a T7 RNA polymerase elongation complex at 2.9 Å resolution , 2002, Nature.

[53]  S. Yokoyama,et al.  Crystal structure of a bacterial RNA polymerase holoenzyme at 2.6 Å resolution , 2002, Nature.

[54]  Jennifer L. Knight,et al.  Structural Organization of Bacterial RNA Polymerase Holoenzyme and the RNA Polymerase-Promoter Open Complex , 2002, Cell.

[55]  D. Bamford,et al.  Bacteriophage phi 6 RNA-dependent RNA polymerase: molecular details of initiating nucleic acid synthesis without primer. , 2002, The Journal of biological chemistry.

[56]  P. Dehaseth,et al.  Interaction of RNA polymerase with forked DNA: Evidence for two kinetically significant intermediates on the pathway to the final complex , 2002, Proceedings of the National Academy of Sciences of the United States of America.