Potassium‐Ion Battery Anode Materials Operating through the Alloying–Dealloying Reaction Mechanism

[1]  Hung-Chun Wu,et al.  Study on Solid-Electrolyte-Interphase of Si and C-Coated Si Electrodes in Lithium Cells , 2009 .

[2]  D. He,et al.  Germanium anode with excellent lithium storage performance in a germanium/lithium-cobalt oxide lithium-ion battery. , 2015, ACS nano.

[3]  Xiulei Ji,et al.  Polynanocrystalline Graphite: A New Carbon Anode with Superior Cycling Performance for K-Ion Batteries. , 2017, ACS applied materials & interfaces.

[4]  Xiulei Ji,et al.  Potassium Secondary Batteries. , 2017, ACS applied materials & interfaces.

[5]  J. Dahn,et al.  Electrochemical and In Situ X‐Ray Diffraction Studies of the Reaction of Lithium with Tin Oxide Composites , 1997 .

[6]  N. Sharma,et al.  Size and Composition Effects in Sb-Carbon Nanocomposites for Sodium-Ion Batteries. , 2016, ACS applied materials & interfaces.

[7]  K. Kubota,et al.  P2- and P3-KxCoO2 as an electrochemical potassium intercalation host. , 2017, Chemical communications.

[8]  J. Dahn,et al.  Short-range Sn ordering and crystal structure of Li4.4Sn prepared by ambient temperature electrochemical methods , 1998 .

[9]  Jeff Tollefson,et al.  Car industry: Charging up the future , 2008, Nature.

[10]  S. Passerini,et al.  Non-Aqueous K-Ion Battery Based on Layered K0.3MnO2 and Hard Carbon/Carbon Black , 2016 .

[11]  Y. Jung,et al.  Scalable Fabrication of Silicon Nanotubes and their Application to Energy Storage , 2012, Advanced materials.

[12]  Shinichi Komaba,et al.  Potassium intercalation into graphite to realize high-voltage/high-power potassium-ion batteries and potassium-ion capacitors , 2015 .

[13]  J. Sangster K−Si (Potassium-Silicon) system , 2006 .

[14]  M. Obrovac,et al.  Alloy Negative Electrodes for High Energy Density Metal-Ion Cells , 2011 .

[15]  Arumugam Manthiram,et al.  High-Capacity, High-Rate Bi–Sb Alloy Anodes for Lithium-Ion and Sodium-Ion Batteries , 2015 .

[16]  A. Mukhopadhyay,et al.  Insights into Electrochemical Behavior, Phase Evolution and Stability of Sn upon K-alloying/de-alloying via In Situ Studies , 2017 .

[17]  M. Winter,et al.  In situ X-ray diffraction study on the formation of α-Sn in nanocrystalline Sn-based electrodes for lithium-ion batteries , 2015 .

[18]  Zhixin Chen,et al.  Phosphorus-Based Alloy Materials for Advanced Potassium-Ion Battery Anode. , 2017, Journal of the American Chemical Society.

[19]  Feixiang Wu,et al.  Li-ion battery materials: present and future , 2015 .

[20]  Jun Chen,et al.  Oxocarbon Salts for Fast Rechargeable Batteries. , 2016, Angewandte Chemie.

[21]  Hyun-Wook Lee,et al.  Scalable synthesis of silicon-nanolayer-embedded graphite for high-energy lithium-ion batteries , 2016, Nature Energy.

[22]  Laure Monconduit,et al.  Better cycling performances of bulk Sb in Na-ion batteries compared to Li-ion systems: an unexpected electrochemical mechanism. , 2012, Journal of the American Chemical Society.

[23]  I. Uchida,et al.  Lithium alloy formation at bismuth thin layer electrode and its kinetics in propylene carbonate electrolyte , 2002 .

[24]  Jiangwei Wang,et al.  Reaction and Capacity-Fading Mechanisms of Tin Nanoparticles in Potassium-Ion Batteries , 2017 .

[25]  Xinping Ai,et al.  High capacity Na-storage and superior cyclability of nanocomposite Sb/C anode for Na-ion batteries. , 2012, Chemical communications.

[26]  V. Chevrier,et al.  Alloy negative electrodes for Li-ion batteries. , 2014, Chemical reviews.

[27]  H. Sohn,et al.  Black Phosphorus and its Composite for Lithium Rechargeable Batteries , 2007 .

[28]  Bingan Lu,et al.  An Organic Cathode for Potassium Dual-Ion Full Battery , 2017 .

[29]  A. Glushenkov,et al.  Stable anode performance of an Sb–carbon nanocomposite in lithium-ion batteries and the effect of ball milling mode in the course of its preparation , 2014 .

[30]  G. Keoleian,et al.  Global Lithium Availability , 2011 .

[31]  Chunsheng Wang,et al.  Electrochemical Performance of Porous Carbon/Tin Composite Anodes for Sodium‐Ion and Lithium‐Ion Batteries , 2013 .

[32]  Jae-Hun Kim,et al.  Li-alloy based anode materials for Li secondary batteries. , 2010, Chemical Society reviews.

[33]  Chris J. Pickard,et al.  Ab Initio Study of Phosphorus Anodes for Lithium- and Sodium-Ion Batteries , 2016 .

[34]  A. Eftekhari Potassium secondary cell based on Prussian blue cathode , 2004 .

[35]  Jia Ding,et al.  Tin and Tin Compounds for Sodium Ion Battery Anodes: Phase Transformations and Performance. , 2015, Accounts of chemical research.

[36]  A. Glushenkov,et al.  Phosphorus–carbon nanocomposite anodes for lithium-ion and sodium-ion batteries , 2015 .

[37]  K. Kubota,et al.  KVPO4F and KVOPO4 toward 4 volt-class potassium-ion batteries. , 2017, Chemical communications.

[38]  Md. Mokhlesur Rahman,et al.  Lithium Germanate (Li2 GeO3 ): A High-Performance Anode Material for Lithium-Ion Batteries. , 2016, Angewandte Chemie.

[39]  A. Glushenkov,et al.  Tin-based composite anodes for potassium-ion batteries. , 2016, Chemical communications.

[40]  P. Komenda,et al.  Dimensionally stable Li-alloy electrodes for secondary batteries , 1990 .

[41]  Gabriel M. Veith,et al.  Intrinsic thermodynamic and kinetic properties of Sb electrodes for Li-ion and Na-ion batteries: experiment and theory , 2013 .

[42]  Marca M. Doeff,et al.  Electrochemical Insertion of Sodium into Carbon , 1993 .

[43]  Haiming Xie,et al.  Electrochemical Activity of Black Phosphorus as an Anode Material for Lithium-Ion Batteries , 2012 .

[44]  Wei-Jun Zhang A review of the electrochemical performance of alloy anodes for lithium-ion batteries , 2011 .

[45]  Adam Heller,et al.  Nanocolumnar Germanium Thin Films as a High-Rate Sodium-Ion Battery Anode Material , 2013 .

[46]  A. J. Morris,et al.  Tracking Sodium-Antimonide Phase Transformations in Sodium-Ion Anodes: Insights from Operando Pair Distribution Function Analysis and Solid-State NMR Spectroscopy , 2016, Journal of the American Chemical Society.

[47]  Gabriel M. Veith,et al.  Germanium as negative electrode material for sodium-ion batteries , 2013 .

[48]  F. Liu,et al.  Investigation of K3V2(PO4)3/C nanocomposites as high-potential cathode materials for potassium-ion batteries. , 2017, Chemical communications.

[49]  Jianjun Li,et al.  Nano-structured phosphorus composite as high-capacity anode materials for lithium batteries. , 2012, Angewandte Chemie.

[50]  Wataru Murata,et al.  Redox reaction of Sn-polyacrylate electrodes in aprotic Na cell , 2012 .

[51]  K. Kubota,et al.  A novel K-ion battery: hexacyanoferrate(II)/graphite cell , 2017 .

[52]  M. Fouletier,et al.  Electrochemical intercalation of sodium in graphite , 1988 .

[53]  Jaephil Cho,et al.  A critical size of silicon nano-anodes for lithium rechargeable batteries. , 2010, Angewandte Chemie.

[54]  Xiulei Ji,et al.  Carbon Electrodes for K-Ion Batteries. , 2015, Journal of the American Chemical Society.

[55]  J. Richardson,et al.  X-ray and neutron diffraction studies on "Li4.4Sn". , 2003, Inorganic chemistry.

[56]  B. Scrosati,et al.  Lithium batteries: Status, prospects and future , 2010 .

[57]  Anming Hu,et al.  Si-Based Anode Materials for Li-Ion Batteries: A Mini Review , 2014, Nano-Micro Letters.

[58]  Dongyuan Zhao,et al.  Highly Reversible and Large Lithium Storage in Mesoporous Si/C Nanocomposite Anodes with Silicon Nanoparticles Embedded in a Carbon Framework , 2014, Advanced materials.

[59]  Md. Mokhlesur Rahman,et al.  Nanocrystalline SnS2 coated onto reduced graphene oxide: demonstrating the feasibility of a non-graphitic anode with sulfide chemistry for potassium-ion batteries. , 2017, Chemical communications.

[60]  S. Dou,et al.  Bismuth: A new anode for the Na-ion battery , 2015 .

[61]  J. Dahn,et al.  Electrochemistry of InSb as a Li Insertion Host: Problems and Prospects , 2001 .

[62]  Mark N. Obrovac,et al.  Reversible Insertion of Sodium in Tin , 2012 .

[63]  T. Brousse,et al.  Micro-ultracapacitors with highly doped silicon nanowires electrodes , 2013, Nanoscale Research Letters.

[64]  Martin Winter,et al.  Electrochemical lithiation of tin and tin-based intermetallics and composites , 1999 .

[65]  J. Dahn,et al.  An In Situ Study of the Electrochemical Reaction of Li with Nanostructured Sn30Co30C40 , 2010 .

[66]  Gerbrand Ceder,et al.  Challenges for Na-ion Negative Electrodes , 2011 .

[67]  Raymond R. Unocic,et al.  Characterization of sodium ion electrochemical reaction with tin anodes: Experiment and theory , 2013 .

[68]  Xiaodi Ren,et al.  Potassium-Ion Oxygen Battery Based on a High Capacity Antimony Anode. , 2015, ACS applied materials & interfaces.

[69]  Fan Zhang,et al.  A Novel Potassium‐Ion‐Based Dual‐Ion Battery , 2017, Advanced materials.

[70]  Chunsheng Wang,et al.  Uniform nano-Sn/C composite anodes for lithium ion batteries. , 2013, Nano letters.

[71]  P. Liu,et al.  A review of carbon materials and their composites with alloy metals for sodium ion battery anodes , 2016 .

[72]  W. Luo,et al.  Potassium Ion Batteries with Graphitic Materials. , 2015, Nano letters.

[73]  Shi Xue Dou,et al.  Enhanced reversible lithium storage in a nanosize silicon/graphene composite , 2010 .

[74]  Peter Müller-Buschbaum,et al.  Silicon based lithium-ion battery anodes: A chronicle perspective review , 2017 .

[75]  Seung M. Oh,et al.  An Amorphous Red Phosphorus/Carbon Composite as a Promising Anode Material for Sodium Ion Batteries , 2013, Advanced materials.

[76]  Jingying Xie,et al.  Si/C composites for high capacity lithium storage materials , 2003 .

[77]  Ling Fan,et al.  Potassium-Based Dual Ion Battery with Dual-Graphite Electrode. , 2017, Small.

[78]  Mikael Höök,et al.  Lithium availability and future production outlooks , 2013 .

[79]  A. Manthiram,et al.  Low-Cost High-Energy Potassium Cathode. , 2017, Journal of the American Chemical Society.

[80]  H. Kwon,et al.  Fabrication of Sn–C composite electrodes by electrodeposition and their cycle performance for Li-ion batteries , 2009 .

[81]  Jun Lu,et al.  Silicon-based anodes for lithium-ion batteries: Effectiveness of materials synthesis and electrode preparation , 2016 .

[82]  P. Kumta,et al.  Tin and graphite based nanocomposites: Potential anode for sodium ion batteries , 2013 .