AN OPTIMAL CONTROL PROBLEM FOR THE STATIONARY NAVIER–STOKES EQUATIONS WITH POINT SOURCES
暂无分享,去创建一个
Enrique Otarola | Francisco Fuica | Felipe Lepe | Daniel Quero | E. Otárola | D. Quero | F. Lepe | F. Fuica | Felipe Lepe
[1] Abner J. Salgado,et al. A weighted setting for the stationary Navier Stokes equations under singular forcing , 2019, Appl. Math. Lett..
[2] Bernd Eggers,et al. Nonlinear Functional Analysis And Its Applications , 2016 .
[3] Fredi Tröltzsch,et al. Second Order Analysis for Optimal Control Problems: Improving Results Expected From Abstract Theory , 2012, SIAM J. Optim..
[4] Enrique Otárola,et al. A Locking-Free FEM in Active Vibration Control of a Timoshenko Beam , 2009, SIAM J. Numer. Anal..
[5] Abner J. Salgado,et al. Stability of the Stokes projection on weighted spaces and applications , 2019, Math. Comput..
[6] Georg Stadler,et al. Elliptic optimal control problems with L1-control cost and applications for the placement of control devices , 2009, Comput. Optim. Appl..
[7] Stefan Wendl,et al. Optimal Control of Partial Differential Equations , 2021, Applied Mathematical Sciences.
[8] V. Gol'dshtein,et al. Weighted Sobolev spaces and embedding theorems , 2007, math/0703725.
[10] D. Haroske,et al. Entropy and Approximation Numbers of Embeddings of Function Spaces with Muckenhoupt Weights, I , 2008 .
[11] B. Turesson,et al. Nonlinear Potential Theory and Weighted Sobolev Spaces , 2000 .
[12] Karl Kunisch,et al. Optimal Control of Semilinear Elliptic Equations in Measure Spaces , 2014, SIAM J. Control. Optim..
[13] M. Carena,et al. Powers of Distances to Lower Dimensional Sets as Muckenhoupt Weights , 2013, 1306.0893.
[14] K. Kunisch,et al. A duality-based approach to elliptic control problems in non-reflexive Banach spaces , 2011 .
[15] R. Farwig,et al. Weighted $L^{q}$-theory for the Stokes resolvent in exterior domains , 1997 .
[16] A. Salgado,et al. Some applications of weighted norm inequalities to the error analysis of PDE constrained optimization problems , 2015, 1505.03919.
[17] R. Farwig,et al. Global estimates in weighted spaces of weak solutions of the Navier-Stokes equations in exterior domains , 1996 .
[18] D. Lieberman,et al. Fourier analysis , 2004, Journal of cataract and refractive surgery.
[19] Karl Kunisch,et al. Optimal Control of the Two-Dimensional Stationary Navier-Stokes Equations with Measure Valued Controls , 2019, SIAM J. Control. Optim..
[20] J. Heinonen,et al. Nonlinear Potential Theory of Degenerate Elliptic Equations , 1993 .
[21] C. Amrouche,et al. $L^p$-Weighted Theory for Navier-Stokes Equations in Exterior Domains , 2010 .
[22] Enrique Otárola,et al. Error Estimates for FEM Discretizations of the Navier–Stokes Equations with Dirac Measures , 2021, Journal of Scientific Computing.
[23] B. Muckenhoupt,et al. Weighted norm inequalities for the Hardy maximal function , 1972 .
[24] K. Schumacher. The stationary Navier-Stokes equations in weighted Bessel-potential spaces , 2009 .
[25] Carlos E. Kenig,et al. The local regularity of solutions of degenerate elliptic equations , 1982 .
[26] Eduardo Casas Rentería. A review on sparse solutions in optimal control of partial differential equations , 2017 .
[27] Gerd Wachsmuth,et al. Convergence and regularization results for optimal control problems with sparsity functional , 2011 .
[28] Giovanni P. Galdi,et al. An Introduction to the Mathematical Theory of the Navier-Stokes Equations: Steady-State Problems , 2011 .
[29] G. Burton. Sobolev Spaces , 2013 .
[30] Karl Kunisch,et al. A measure space approach to optimal source placement , 2012, Comput. Optim. Appl..
[31] Roland Herzog,et al. Optimality Conditions and Error Analysis of Semilinear Elliptic Control Problems with L1 Cost Functional , 2012, SIAM J. Optim..
[32] D. Haroske,et al. ENTROPY AND APPROXIMATION NUMBERS OF EMBEDDINGS OF FUNCTION SPACES WITH MUCKENHOUPT WEIGHTS, II. GENERAL WEIGHTS , 2011 .
[33] A. Salgado,et al. The Poisson and Stokes problems on weighted spaces in Lipschitz domains and under singular forcing , 2019, Journal of Mathematical Analysis and Applications.
[34] Enrique Otarola. Semilinear optimal control with Dirac measures , 2021, ArXiv.
[35] Abner J. Salgado,et al. Ana posteriorierror analysis for an optimal control problem with point sources , 2016, ESAIM: Mathematical Modelling and Numerical Analysis.
[36] Matthew Wright,et al. Boundary value problems for the Stokes system in arbitrary Lipschitz domains , 2011 .
[37] D. Serre. Équations de Navier-Stokes stationnaires avec données peu régulières , 1983 .
[38] Pablo Gamallo,et al. Finite Element Methods in Local Active Control of Sound , 2004, SIAM J. Control. Optim..
[39] Wei Gong,et al. Approximations of Elliptic Optimal Control Problems with Controls Acting on a Lower Dimensional Manifold , 2014, SIAM J. Control. Optim..