AN OPTIMAL CONTROL PROBLEM FOR THE STATIONARY NAVIER–STOKES EQUATIONS WITH POINT SOURCES

Abstract. The aim of this work is to analyze a two dimensional optimal control problem for the Navier–Stokes equations where the control variable corresponds to the amplitude of forces modeled as point sources; control constraints are also considered. This particular setting leads to solutions to the state equation exhibiting reduced regularity properties. We operate within the theory of Muckenhoupt weights, Muckenhoupt–weighted Sobolev spaces, and the corresponding weighted norm inequalities and derive the existence of optimal solutions and first and, necessary and sufficient, second order optimality conditions.

[1]  Abner J. Salgado,et al.  A weighted setting for the stationary Navier Stokes equations under singular forcing , 2019, Appl. Math. Lett..

[2]  Bernd Eggers,et al.  Nonlinear Functional Analysis And Its Applications , 2016 .

[3]  Fredi Tröltzsch,et al.  Second Order Analysis for Optimal Control Problems: Improving Results Expected From Abstract Theory , 2012, SIAM J. Optim..

[4]  Enrique Otárola,et al.  A Locking-Free FEM in Active Vibration Control of a Timoshenko Beam , 2009, SIAM J. Numer. Anal..

[5]  Abner J. Salgado,et al.  Stability of the Stokes projection on weighted spaces and applications , 2019, Math. Comput..

[6]  Georg Stadler,et al.  Elliptic optimal control problems with L1-control cost and applications for the placement of control devices , 2009, Comput. Optim. Appl..

[7]  Stefan Wendl,et al.  Optimal Control of Partial Differential Equations , 2021, Applied Mathematical Sciences.

[8]  V. Gol'dshtein,et al.  Weighted Sobolev spaces and embedding theorems , 2007, math/0703725.

[10]  D. Haroske,et al.  Entropy and Approximation Numbers of Embeddings of Function Spaces with Muckenhoupt Weights, I , 2008 .

[11]  B. Turesson,et al.  Nonlinear Potential Theory and Weighted Sobolev Spaces , 2000 .

[12]  Karl Kunisch,et al.  Optimal Control of Semilinear Elliptic Equations in Measure Spaces , 2014, SIAM J. Control. Optim..

[13]  M. Carena,et al.  Powers of Distances to Lower Dimensional Sets as Muckenhoupt Weights , 2013, 1306.0893.

[14]  K. Kunisch,et al.  A duality-based approach to elliptic control problems in non-reflexive Banach spaces , 2011 .

[15]  R. Farwig,et al.  Weighted $L^{q}$-theory for the Stokes resolvent in exterior domains , 1997 .

[16]  A. Salgado,et al.  Some applications of weighted norm inequalities to the error analysis of PDE constrained optimization problems , 2015, 1505.03919.

[17]  R. Farwig,et al.  Global estimates in weighted spaces of weak solutions of the Navier-Stokes equations in exterior domains , 1996 .

[18]  D. Lieberman,et al.  Fourier analysis , 2004, Journal of cataract and refractive surgery.

[19]  Karl Kunisch,et al.  Optimal Control of the Two-Dimensional Stationary Navier-Stokes Equations with Measure Valued Controls , 2019, SIAM J. Control. Optim..

[20]  J. Heinonen,et al.  Nonlinear Potential Theory of Degenerate Elliptic Equations , 1993 .

[21]  C. Amrouche,et al.  $L^p$-Weighted Theory for Navier-Stokes Equations in Exterior Domains , 2010 .

[22]  Enrique Otárola,et al.  Error Estimates for FEM Discretizations of the Navier–Stokes Equations with Dirac Measures , 2021, Journal of Scientific Computing.

[23]  B. Muckenhoupt,et al.  Weighted norm inequalities for the Hardy maximal function , 1972 .

[24]  K. Schumacher The stationary Navier-Stokes equations in weighted Bessel-potential spaces , 2009 .

[25]  Carlos E. Kenig,et al.  The local regularity of solutions of degenerate elliptic equations , 1982 .

[26]  Eduardo Casas Rentería A review on sparse solutions in optimal control of partial differential equations , 2017 .

[27]  Gerd Wachsmuth,et al.  Convergence and regularization results for optimal control problems with sparsity functional , 2011 .

[28]  Giovanni P. Galdi,et al.  An Introduction to the Mathematical Theory of the Navier-Stokes Equations: Steady-State Problems , 2011 .

[29]  G. Burton Sobolev Spaces , 2013 .

[30]  Karl Kunisch,et al.  A measure space approach to optimal source placement , 2012, Comput. Optim. Appl..

[31]  Roland Herzog,et al.  Optimality Conditions and Error Analysis of Semilinear Elliptic Control Problems with L1 Cost Functional , 2012, SIAM J. Optim..

[32]  D. Haroske,et al.  ENTROPY AND APPROXIMATION NUMBERS OF EMBEDDINGS OF FUNCTION SPACES WITH MUCKENHOUPT WEIGHTS, II. GENERAL WEIGHTS , 2011 .

[33]  A. Salgado,et al.  The Poisson and Stokes problems on weighted spaces in Lipschitz domains and under singular forcing , 2019, Journal of Mathematical Analysis and Applications.

[34]  Enrique Otarola Semilinear optimal control with Dirac measures , 2021, ArXiv.

[35]  Abner J. Salgado,et al.  Ana posteriorierror analysis for an optimal control problem with point sources , 2016, ESAIM: Mathematical Modelling and Numerical Analysis.

[36]  Matthew Wright,et al.  Boundary value problems for the Stokes system in arbitrary Lipschitz domains , 2011 .

[37]  D. Serre Équations de Navier-Stokes stationnaires avec données peu régulières , 1983 .

[38]  Pablo Gamallo,et al.  Finite Element Methods in Local Active Control of Sound , 2004, SIAM J. Control. Optim..

[39]  Wei Gong,et al.  Approximations of Elliptic Optimal Control Problems with Controls Acting on a Lower Dimensional Manifold , 2014, SIAM J. Control. Optim..