Energy Harvesting Research: The Road from Single Source to Multisource

Energy harvesting technology may be considered an ultimate solution to replace batteries and provide a long-term power supply for wireless sensor networks. Looking back into its research history, individual energy harvesters for the conversion of single energy sources into electricity are developed first, followed by hybrid counterparts designed for use with multiple energy sources. Very recently, the concept of a truly multisource energy harvester built from only a single piece of material as the energy conversion component is proposed. This review, from the aspect of materials and device configurations, explains in detail a wide scope to give an overview of energy harvesting research. It covers single-source devices including solar, thermal, kinetic and other types of energy harvesters, hybrid energy harvesting configurations for both single and multiple energy sources and single material, and multisource energy harvesters. It also includes the energy conversion principles of photovoltaic, electromagnetic, piezoelectric, triboelectric, electrostatic, electrostrictive, thermoelectric, pyroelectric, magnetostrictive, and dielectric devices. This is one of the most comprehensive reviews conducted to date, focusing on the entire energy harvesting research scene and providing a guide to seeking deeper and more specific research references and resources from every corner of the scientific community.

[1]  Zhou Li,et al.  Decoupling interrelated parameters for designing high performance thermoelectric materials. , 2014, Accounts of chemical research.

[2]  S. Young,et al.  Materials Design of Visible-Light Ferroelectric Photovoltaics from First Principles , 2015 .

[3]  Wen-Jong Wu,et al.  Fabrication and performance evaluation of a metal-based bimorph piezoelectric MEMS generator for vibration energy harvesting , 2016 .

[4]  S. Nahm,et al.  Relation between piezoelectric properties of ceramics and output power density of energy harvester , 2013 .

[5]  Kyu Hyoung Lee,et al.  Design and preparation of high-performance bulk thermoelectric materials with defect structures , 2017 .

[6]  Tao Wang,et al.  Flutter Phenomenon in Flow Driven Energy Harvester–A Unified Theoretical Model for “Stiff” and “Flexible” Materials , 2016, Scientific Reports.

[7]  Jin-Woo Han,et al.  Ferrofluid-based triboelectric-electromagnetic hybrid generator for sensitive and sustainable vibration energy harvesting , 2017 .

[8]  Jin-Cheng Zheng Recent advances on thermoelectric materials , 2008 .

[9]  Jinkyu Yang,et al.  Flexible ceramic-elastomer composite piezoelectric energy harvester fabricated by additive manufacturing , 2016 .

[10]  D. Inman,et al.  A Review of Power Harvesting from Vibration using Piezoelectric Materials , 2004 .

[11]  Seung Jin Oh,et al.  Development of a tree‐shaped wind power system using piezoelectric materials , 2010 .

[12]  Fenggong Wang,et al.  Semiconducting ferroelectric photovoltaics through Zn 2+ doping into KNbO 3 and polarization rotation , 2014 .

[13]  N. Hudak,et al.  Small-scale energy harvesting through thermoelectric, vibration, and radiofrequency power conversion , 2008 .

[14]  Christopher R. Bowen,et al.  Pyroelectric materials and devices for energy harvesting applications , 2014 .

[15]  Xihong Hao,et al.  Phase Structure Tuned Electrocaloric Effect and Pyroelectric Energy Harvesting Performance of (Pb0.97La0.02)(Zr,Sn,Ti)O3 Antiferroelectric Thick Films , 2015 .

[16]  X. Ye,et al.  Freestanding-electret rotary generator at an average conversion efficiency of 56%: Theoretical and experimental studies , 2017 .

[17]  Oliver G. Schmidt,et al.  A Flexible PMN‐PT Ribbon‐Based Piezoelectric‐Pyroelectric Hybrid Generator for Human‐Activity Energy Harvesting and Monitoring , 2017 .

[18]  Geon-Tae Hwang,et al.  Piezoelectric BaTiO₃ thin film nanogenerator on plastic substrates. , 2010, Nano letters.

[19]  Weiqing Yang,et al.  Broadband Vibrational Energy Harvesting Based on a Triboelectric Nanogenerator , 2014 .

[20]  Christopher R. Bowen,et al.  Piezoelectric and ferroelectric materials and structures for energy harvesting applications , 2014 .

[21]  S. Trolier-McKinstry,et al.  ⟨001⟩ textured (K0.5Na0.5)(Nb0.97Sb0.03)O3 piezoelectric ceramics with high electromechanical coupling over a broad temperature range , 2009 .

[22]  C. Keplinger,et al.  25th Anniversary Article: A Soft Future: From Robots and Sensor Skin to Energy Harvesters , 2013, Advanced materials.

[23]  Frank T. Fisher,et al.  A coupled piezoelectric–electromagnetic energy harvesting technique for achieving increased power output through damping matching , 2009 .

[24]  Bai-Xiang Xu,et al.  Vibration-based energy harvesting with a clamped piezoelectric circular diaphragm: analysis and identification of optimal structural parameters , 2017 .

[25]  J. Heo,et al.  CH3NH3PbBr3–CH3NH3PbI3 Perovskite–Perovskite Tandem Solar Cells with Exceeding 2.2 V Open Circuit Voltage , 2016, Advanced materials.

[26]  R. Funahashi,et al.  Thermoelectric materials for middle and high temperature ranges , 2015 .

[27]  Jianmin Miao,et al.  Proof mass effects on spiral electrode d 33 mode piezoelectric diaphragm-based energy harvester , 2013 .

[28]  Ashraf Uddin,et al.  Stability of perovskite solar cells , 2016 .

[29]  Gang Wang,et al.  Analysis of bimorph piezoelectric beam energy harvesters using Timoshenko and Euler–Bernoulli beam theory , 2013 .

[30]  Jaehwa Jeong,et al.  Micromachining of a bimorph Pb(Zr,Ti)O3 (PZT) cantilever using a micro-electromechanical systems (MEMS) process for energy harvesting application. , 2012, Journal of nanoscience and nanotechnology.

[31]  Reuben T. Collins,et al.  Hybrid photovoltaic devices of polymer and ZnO nanofiber composites , 2006 .

[32]  Rachel A. Segalman,et al.  Organic thermoelectric materials for energy harvesting and temperature control , 2016, Nature Reviews Materials.

[33]  Atanas A. Popov,et al.  Piezoelectric energy harvesting for tyre pressure measurement applications , 2013 .

[34]  N. Setter,et al.  Preparation and Characterization of KNbO3 Ceramics , 2005 .

[35]  Farid Ullah Khan,et al.  State-of-the-art in vibration-based electrostatic energy harvesting , 2016 .

[36]  M. Grätzel Dye-sensitized solar cells , 2003 .

[37]  Suhana Mohd Said,et al.  Recent advances on Mg2Si1−xSnx materials for thermoelectric generation , 2014 .

[38]  D. Guyomar,et al.  Mechanical energy harvesting via a plasticizer-modified electrostrictive polymer , 2016 .

[39]  Jingjing Zhao,et al.  A Shoe-Embedded Piezoelectric Energy Harvester for Wearable Sensors , 2014, Sensors.

[40]  S. Lang Pyroelectricity: From Ancient Curiosity to Modern Imaging Tool , 2005 .

[41]  Asan Gani Abdul Muthalif,et al.  Optimal piezoelectric beam shape for single and broadband vibration energy harvesting: Modeling, simulation and experimental results , 2015 .

[42]  David A W Barton,et al.  Energy harvesting from vibrations with a nonlinear oscillator , 2010 .

[43]  Mohammad Khaja Nazeeruddin,et al.  Organohalide lead perovskites for photovoltaic applications , 2014 .

[44]  Sandeep Kumar Pathak,et al.  Lead-free organic–inorganic tin halide perovskites for photovoltaic applications , 2014 .

[45]  Saeed Ziaei-Rad,et al.  Experimental and theoretical investigations on piezoelectric-based energy harvesting from bridge vibrations under travelling vehicles , 2016 .

[46]  Terry M. Tritt,et al.  Thermoelectric Phenomena, Materials, and Applications , 2011 .

[47]  Gang Li,et al.  Recent Progress in Polymer Solar Cells: Manipulation of Polymer:Fullerene Morphology and the Formation of Efficient Inverted Polymer Solar Cells , 2009 .

[48]  Antonios Tsourdos,et al.  Vibration energy harvesters for wireless sensor networks for aircraft health monitoring , 2016, 2016 IEEE Metrology for Aerospace (MetroAeroSpace).

[49]  X. D. Xie,et al.  Energy harvesting from a vehicle suspension system , 2015 .

[50]  Ralf Moos,et al.  Textured PMN–PT and PMN–PZT , 2008 .

[51]  Feng Qiu,et al.  Towards high-performance polymer-based thermoelectric materials , 2013 .

[52]  Prashant V. Kamat,et al.  Quantum Dot Solar Cells. Semiconductor Nanocrystals as Light Harvesters , 2008 .

[53]  J. Reboud,et al.  A cm scale electret-based electrostatic wind turbine for low-speed energy harvesting applications , 2016 .

[54]  Yongtian Wang,et al.  In Situ Fabrication of Halide Perovskite Nanocrystal‐Embedded Polymer Composite Films with Enhanced Photoluminescence for Display Backlights , 2016, Advanced materials.

[55]  D. Guyomar,et al.  A new technique for maximizing the energy harvested using electrostrictive polymer composite , 2013 .

[56]  Dhia Salim,et al.  A review of vibration-based MEMS hybrid energy harvesters , 2015 .

[57]  Giovanni Pennelli,et al.  Review of nanostructured devices for thermoelectric applications , 2014, Beilstein journal of nanotechnology.

[58]  Andrei Osinsky,et al.  Pyroelectric properties of AlN , 2000 .

[59]  M. Karppinen,et al.  Inorganic-organic superlattice thin films for thermoelectrics , 2015 .

[60]  Yong Zhang,et al.  A model for the energy harvesting performance of shear mode piezoelectric cantilever , 2012 .

[61]  He Zhang,et al.  Mechanical Energy Harvesting From Road Pavements Under Vehicular Load Using Embedded Piezoelectric Elements , 2016 .

[62]  Yonas Tadesse,et al.  Characterization of Pyroelectric Materials for Energy Harvesting from Human Body , 2014 .

[63]  Qi Xu,et al.  Biocompatible Nanogenerators through High Piezoelectric Coefficient 0.5Ba(Zr0.2Ti0.8)O3‐0.5(Ba0.7Ca0.3)TiO3 Nanowires for In‐Vivo Applications , 2014, Advanced materials.

[64]  Richard E. Eitel,et al.  Dielectric and Piezoelectric Properties in Mn‐Modified (1−x)BiFeO3–xBaTiO3 Ceramics , 2009 .

[65]  Juan Bisquert,et al.  Polarization Switching and Light-Enhanced Piezoelectricity in Lead Halide Perovskites. , 2015, The journal of physical chemistry letters.

[66]  Olle Heinonen,et al.  Polymer piezoelectric energy harvesters for low wind speed , 2014 .

[67]  K. Kanai,et al.  Halide-Substituted Electronic Properties of Organometal Halide Perovskite Films: Direct and Inverse Photoemission Studies. , 2016, ACS applied materials & interfaces.

[68]  Stewart Sherrit,et al.  Piezoelectric Energy Harvesting in Internal Fluid Flow , 2015, Sensors.

[69]  W. Sakamoto,et al.  Vibrational Energy Harvesting Using a Unimorph with PZT- or BT-Based Ceramics , 2013 .

[70]  Sourav Banerjee,et al.  A review on energy harvesting approaches for renewable energies from ambient vibrations and acoustic waves using piezoelectricity , 2017 .

[71]  Rahul Vaish,et al.  Experimental Study on Waste Heat Energy Harvesting using Lead Zirconate Titanate (PZT‐5H) Pyroelectric Ceramics , 2015 .

[72]  Hua Yu,et al.  A Hybrid Indoor Ambient Light and Vibration Energy Harvester for Wireless Sensor Nodes , 2014, Sensors.

[73]  Andrew C. Grimsdale,et al.  Perovskite-based solar cells: impact of morphology and device architecture on device performance , 2015 .

[74]  H. Hida,et al.  Airflow energy harvester of piezoelectric thin-film bimorph using self-excited vibration , 2017 .

[75]  Dinesh K. Aswal,et al.  Key issues in development of thermoelectric power generators: High figure-of-merit materials and their highly conducting interfaces with metallic interconnects , 2016 .

[76]  Fehmi Najar,et al.  Parametric analysis of multilayered unimorph piezoelectric vibration energy harvesters , 2017 .

[77]  Alper Erturk,et al.  Three-Degree-of-Freedom Hybrid Piezoelectric-Inductive Aeroelastic Energy Harvester Exploiting a Control Surface , 2015 .

[78]  İlker Temizer,et al.  The performance and analysis of the thermoelectric generator system used in diesel engines , 2016 .

[79]  Qingjie Zhang,et al.  Eco-friendly high-performance silicide thermoelectric materials , 2017 .

[80]  Zhou Li,et al.  Recent Progress on Piezoelectric and Triboelectric Energy Harvesters in Biomedical Systems , 2017, Advanced science.

[81]  Tulja Bhavani Korukonda,et al.  Recent advancement in metal cathode and hole-conductor-free perovskite solar cells for low-cost and high stability: A route towards commercialization , 2018 .

[82]  L. Luo,et al.  Electrocaloric effect and pyroelectric energy harvesting of (0.94 − x)Na0.5Bi0.5TiO3-0.06BaTiO3-xSrTiO3 ceramics , 2017 .

[83]  Ezhilarasi Deenadayalan,et al.  A review of acoustic energy harvesting , 2014 .

[84]  Xingjian Jing,et al.  A comprehensive review on vibration energy harvesting: Modelling and realization , 2017 .

[85]  N. Setter,et al.  Preparation and characterization of (K0.5Na0.5)NbO3 ceramics , 2006 .

[86]  Zhong Lin Wang,et al.  Flexible hybrid energy cell for simultaneously harvesting thermal, mechanical, and solar energies. , 2013, ACS nano.

[87]  Yongan Huang,et al.  Energy Harvesters for Wearable and Stretchable Electronics: From Flexibility to Stretchability , 2016, Advanced materials.

[88]  Y. Chiu,et al.  PDMS-based flexible energy harvester with Parylene electret and copper mesh electrodes , 2015 .

[89]  K. Nielsch,et al.  Thermoelectric Nanostructures: From Physical Model Systems towards Nanograined Composites , 2011 .

[90]  Young Hun Jeong,et al.  Performance of unimorph cantilever generator using Cr/Nb doped Pb(Zr0.54Ti0.46)O3 thick film for energy harvesting device applications , 2013 .

[91]  Jeffrey W. Fergus,et al.  Oxide materials for high temperature thermoelectric energy conversion , 2012 .

[92]  Li-dong Zhao,et al.  Thermoelectric materials: Energy conversion between heat and electricity , 2015 .

[93]  Henry A. Sodano,et al.  A review of power harvesting using piezoelectric materials (2003–2006) , 2007 .

[94]  A. Akbarzadeh,et al.  A review of car waste heat recovery systems utilising thermoelectric generators and heat pipes , 2016 .

[95]  Sahn Nahm,et al.  High Energy Density Piezoelectric Ceramics for Energy Harvesting Devices , 2011 .

[96]  D. Guyomar,et al.  Thickness effects of electret and polymer for energy harvesting: Case of CYTOP- CTLM and polyurethane , 2015 .

[97]  Sevki Demirbas,et al.  Implementation of a New Contactless Piezoelectric Wind Energy Harvester to a Wireless Weather Station , 2014 .

[98]  S. Beeby,et al.  Energy harvesting vibration sources for microsystems applications , 2006 .

[99]  Zhong Lin Wang,et al.  Flexible triboelectric generator , 2012 .

[100]  Yongliang Li,et al.  Wide spectrum solar energy harvesting through an integrated photovoltaic and thermoelectric system , 2014 .

[101]  Stephen R Hallett,et al.  Energy harvesting behaviour for aircraft composites structures using macro-fibre composite: Part I – Integration and experiment , 2017 .

[102]  Ping Li,et al.  Theoretical analysis and experimental study for nonlinear hybrid piezoelectric and electromagnetic energy harvester , 2015, Microsystem Technologies.

[103]  Ping Li,et al.  An arc-shaped piezoelectric generator for multi-directional wind energy harvesting , 2015 .

[104]  Swee Leong Kok,et al.  Hybrid vibration energy harvester based on piezoelectric and electromagnetic transduction mechanism , 2013, 2013 IEEE Conference on Clean Energy and Technology (CEAT).

[105]  Mingsen Guo,et al.  A flex-compressive-mode piezoelectric transducer for mechanical vibration/strain energy harvesting , 2011, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[106]  Marco Ferrari,et al.  Piezoelectric buckled beams for random vibration energy harvesting , 2012 .

[107]  Jari Juuti,et al.  Energy harvesting with a cymbal type piezoelectric transducer from low frequency compression , 2012, Journal of Electroceramics.

[108]  Zhengguo Shang,et al.  A micromachined low-frequency piezoelectric harvester for vibration and wind energy scavenging , 2013 .

[109]  Xiaolin Wang,et al.  Energy-storage performance and pyroelectric energy harvesting effect of PNZST antiferroelectric thin films , 2016, Journal of Materials Science: Materials in Electronics.

[110]  Yan Zhang,et al.  Enhanced pyroelectric and piezoelectric properties of PZT with aligned porosity for energy harvesting applications† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c7ta00967d Click here for additional data file. , 2017, Journal of materials chemistry. A.

[111]  S Dulio,et al.  Energy harvesting from human motion: materials and techniques. , 2016, Chemical Society reviews.

[112]  Kevin M. Farinholt,et al.  Energy harvesting from a backpack instrumented with piezoelectric shoulder straps , 2007 .

[113]  M. Zebarjadi,et al.  Thermoelectric power factor: Enhancement mechanisms and strategies for higher performance thermoelectric materials , 2015 .

[114]  Min Gyu Kang,et al.  Recent Progress on PZT Based Piezoelectric Energy Harvesting Technologies , 2016 .

[115]  J. Park,et al.  Modeling and Characterization of Piezoelectric $d_{33}$ -Mode MEMS Energy Harvester , 2010, Journal of Microelectromechanical Systems.

[116]  Zhong Lin Wang Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors. , 2013, ACS nano.

[117]  R. van Schaijk,et al.  Harvesting energy from airflow with a michromachined piezoelectric harvester inside a Helmholtz resonator , 2011 .

[118]  B. Ilahi,et al.  Pyroelectric Energy Harvesting Using (Ba0.85Ca0.15) (Zr0.1Ti0.89Fe0.01)O3 Ceramics , 2015 .

[119]  N. Goo,et al.  Use of a magnetic force exciter to vibrate a piezocomposite generating element in a small-scale windmill , 2012 .

[120]  Canan Dagdeviren,et al.  Shear Piezoelectricity in Poly(vinylidenefluoride‐co‐trifluoroethylene): Full Piezotensor Coefficients by Molecular Modeling, Biaxial Transverse Response, and Use in Suspended Energy‐Harvesting Nanostructures , 2016, Advanced materials.

[121]  Derya Baran,et al.  Review—Organic Materials for Thermoelectric Energy Generation , 2017 .

[122]  Renwen Chen,et al.  Analysis of piezoelectric–electromagnetic hybrid vibration energy harvester under different electrical boundary conditions , 2015 .

[123]  Xingzhong Zhao,et al.  Energy harvesting with piezoelectric drum transducer , 2007 .

[124]  N. Elvin,et al.  Energy Harvesting from Highly Unsteady Fluid Flows using Piezoelectric Materials , 2010 .

[125]  Daniel Guyomar,et al.  Hybridization of electrostrictive polymers and electrets for mechanical energy harvesting , 2012 .

[126]  Xueliang Huang,et al.  A Vibration-Based Hybrid Energy Harvester for Wireless Sensor Systems , 2012, IEEE Transactions on Magnetics.

[127]  Alessia Polemi,et al.  Erratum: Power conversion efficiency exceeding the Shockley–Queisser limit in a ferroelectric insulator , 2016, Nature Photonics.

[128]  A. Cuadras,et al.  Multimodal piezoelectric wind energy harvesters , 2011 .

[129]  Toshio Kimura Application of texture engineering to piezoelectric ceramics : A review , 2006 .

[130]  Y. Nishijima,et al.  Design concept of a hybrid photo-voltaic/thermal conversion cell for mid-infrared light energy harvester , 2017 .

[131]  K. Koumoto,et al.  Development of novel thermoelectric materials by reduction of lattice thermal conductivity , 2010, Science and technology of advanced materials.

[132]  Walid A. Daoud,et al.  Synergetic effects in composite-based flexible hybrid mechanical energy harvesting generator , 2017 .

[133]  Chiara Petrioli,et al.  Energy-harvesting WSNs for structural health monitoring of underground train tunnels , 2013, INFOCOM Workshops.

[134]  D. Guyomar,et al.  Energy harvesting using hybridization of dielectric nanocomposites and electrets , 2015 .

[135]  Soma Dutta,et al.  Preparation and Characterization of BaTiO3–PbZrTiO3 Coating for Pyroelectric Energy Harvesting , 2016, Journal of Electronic Materials.

[136]  F. Fan,et al.  Flexible Nanogenerators for Energy Harvesting and Self‐Powered Electronics , 2016, Advanced materials.

[137]  Liyan Wu,et al.  Perovskite oxides for visible-light-absorbing ferroelectric and photovoltaic materials , 2013, Nature.

[138]  Wei Chen,et al.  Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers , 2015, Science.

[139]  Ulrike Wallrabe,et al.  Review on Electrodynamic Energy Harvesters - A Classification Approach , 2013, Micromachines.

[140]  S. Beeby,et al.  Strategies for increasing the operating frequency range of vibration energy harvesters: a review , 2010 .

[141]  Hee Seok Kim,et al.  The bridge between the materials and devices of thermoelectric power generators , 2017 .

[142]  Henry J Snaith,et al.  Metal-halide perovskites for photovoltaic and light-emitting devices. , 2015, Nature nanotechnology.

[143]  Nannan Zhang,et al.  Progress in triboelectric nanogenerators as self-powered smart sensors , 2017 .

[144]  Tae Yun Kim,et al.  Boosting Power‐Generating Performance of Triboelectric Nanogenerators via Artificial Control of Ferroelectric Polarization and Dielectric Properties , 2017 .

[145]  D. G. Walker,et al.  Review of electronic transport models for thermoelectric materials , 2008 .

[146]  Hulin Zhang,et al.  Simultaneously Harvesting Thermal and Mechanical Energies based on Flexible Hybrid Nanogenerator for Self-Powered Cathodic Protection. , 2015, ACS applied materials & interfaces.

[147]  Yang Bai,et al.  Investigation of a cantilever structured piezoelectric energy harvester used for wearable devices with random vibration input , 2018, Mechanical Systems and Signal Processing.

[148]  Chain‐Shu Hsu,et al.  Synthesis of conjugated polymers for organic solar cell applications. , 2009, Chemical reviews.

[149]  Zhong Lin Wang,et al.  Harvesting Broad Frequency Band Blue Energy by a Triboelectric-Electromagnetic Hybrid Nanogenerator. , 2016, ACS nano.

[150]  Zhongqiang Zhang,et al.  Recent advances in perovskite solar cells: efficiency, stability and lead-free perovskite , 2017 .

[151]  M. Gaur,et al.  Optical properties of solution grown PVDF-ZnO nanocomposite thin films , 2012, Journal of Polymer Research.

[152]  Raziel Riemer,et al.  Biomechanical energy harvesting from human motion: theory, state of the art, design guidelines, and future directions , 2011, Journal of NeuroEngineering and Rehabilitation.

[153]  Alberto Carpinteri,et al.  Energy harvesting from wind by a piezoelectric harvester , 2017 .

[154]  Qifa Zhou,et al.  Vibration energy harvesting using piezoelectric circular diaphragm array , 2012, 2011 International Symposium on Applications of Ferroelectrics (ISAF/PFM) and 2011 International Symposium on Piezoresponse Force Microscopy and Nanoscale Phenomena in Polar Materials.

[155]  S. Young,et al.  First principles calculation of the shift current photovoltaic effect in ferroelectrics. , 2012, Physical review letters.

[156]  Xiaoning Jiang,et al.  Energy harvesting using a PZT ceramic multilayer stack , 2013 .

[157]  Ming Wu,et al.  Ni-doped SrBi2Nb2O9 – Perovskite oxides with reduced band gap and stable ferroelectricity for photovoltaic applications , 2017 .

[158]  Yang Bai,et al.  A Game Changer: A Multifunctional Perovskite Exhibiting Giant Ferroelectricity and Narrow Bandgap with Potential Application in a Truly Monolithic Multienergy Harvester or Sensor , 2017, Advanced materials.

[159]  Christopher R. Bowen,et al.  A novel pyroelectric generator utilising naturally driven temperature fluctuations from oscillating heat pipes for waste heat recovery and thermal energy harvesting , 2016 .

[160]  Seong Sik Shin,et al.  Fabrication of Efficient Formamidinium Tin Iodide Perovskite Solar Cells through SnF₂-Pyrazine Complex. , 2016, Journal of the American Chemical Society.

[161]  T. Takagi,et al.  High Frequency Thermal Energy Harvesting Using Magnetic Shape Memory Films , 2014 .

[162]  Carmel Majidi,et al.  Analysis and design principles for shear-mode piezoelectric energy harvesting with ZnO nanoribbons , 2010 .

[163]  D. Guyomar,et al.  Electrostrictive polymer composite for energy harvesters and actuators , 2011 .

[164]  Ann Marie Sastry,et al.  Powering MEMS portable devices—a review of non-regenerative and regenerative power supply systems with special emphasis on piezoelectric energy harvesting systems , 2008 .

[165]  F. Edler,et al.  Metrology for energy harvesting , 2012 .

[166]  Vladislav Singule,et al.  Model-based design and test of vibration energy harvester for aircraft application , 2014 .

[167]  G. J. Snyder,et al.  Complex thermoelectric materials. , 2008, Nature materials.

[168]  Dominique Siegert,et al.  Piezoelectric energy harvesting from traffic-induced bridge vibrations , 2013 .

[169]  Jiantao Zhang,et al.  Enhanced piezoelectric wind energy harvesting based on a buckled beam , 2017 .

[170]  Jaeyun Lee,et al.  Development of a piezoelectric energy harvesting system for implementing wireless sensors on the tires , 2014 .

[171]  Lei Yang,et al.  Nanostructured thermoelectric materials: current research and future challenge , 2012 .

[172]  Zhong Lin Wang,et al.  Hybrid energy cell for simultaneously harvesting wind, solar, and chemical energies , 2014, Nano Research.

[173]  Jinsong Huang,et al.  CH3NH3PbI3 perovskites: Ferroelasticity revealed , 2017, Science Advances.

[174]  Jaehwan Kim,et al.  A review of piezoelectric energy harvesting based on vibration , 2011 .

[175]  Steve Dunn,et al.  Piezoelectric nanogenerators – a review of nanostructured piezoelectric energy harvesters , 2015 .

[176]  Ali Shakouri,et al.  Nanostructured Thermoelectrics: Big Efficiency Gains from Small Features , 2010, Advanced materials.

[177]  Abdessattar Abdelkefi,et al.  Nonlinear dynamics and comparative analysis of hybrid piezoelectric-inductive energy harvesters subjected to galloping vibrations , 2015 .

[178]  G. Uma,et al.  Pyroelectric-Based Solar and Wind Energy Harvesting System , 2014, IEEE Transactions on Sustainable Energy.

[179]  Xiangqian Xiu,et al.  The contributions of the acoustic modes and optical modes to the primary pyroelectric coefficient of GaN , 2009 .

[180]  Othman Sidek,et al.  A review of vibration-based MEMS piezoelectric energy harvesters , 2011 .

[181]  Fan Liao,et al.  Recent Advancements in Nanogenerators for Energy Harvesting. , 2015, Small.

[182]  Qingshuo Wei,et al.  Recent Progress on PEDOT-Based Thermoelectric Materials , 2015, Materials.

[183]  K. Bartholomé,et al.  Thermoelectric efficiency of (1 - x)(GeTe) x(Bi2Se0.2Te2.8) and implementation into highly performing thermoelectric power generators. , 2015, Dalton transactions.

[184]  Wei Wang,et al.  Piezoelectric energy harvesting using shear mode 0.71Pb(Mg1/3Nb2/3)O3–0.29PbTiO3 single crystal cantilever , 2010 .

[185]  Daniel J. Inman,et al.  Parametrically excited nonlinear piezoelectric compact wind turbine , 2013 .

[186]  Shiqiao Gao,et al.  Coupling effect analysis for hybrid piezoelectric and electromagnetic energy harvesting from random vibrations , 2014 .

[187]  Erol Kurt,et al.  Design and implementation of a new contactless triple piezoelectrics wind energy harvester , 2017 .

[188]  A. Goetzberger,et al.  Photovoltaic materials, history, status and outlook , 2003 .

[189]  Nam Seo Goo,et al.  Use of a piezo‐composite generating element for harvesting wind energy in an urban region , 2010 .

[190]  D. Guyomar,et al.  Combination of electrostrictive polymers composites and electrets for energy harvesting capability , 2014 .

[191]  Young Gyu Jeong,et al.  High Performance Flexible Piezoelectric Nanogenerators based on BaTiO3 Nanofibers in Different Alignment Modes. , 2016, ACS applied materials & interfaces.

[192]  Melin Sahin,et al.  Bimorph piezoelectric energy harvester structurally integrated on a trapezoidal plate , 2016 .

[193]  Thomas A. Berfield,et al.  A bi-stable buckled energy harvesting device actuated via torque arms , 2014 .

[194]  V. Nagarajan,et al.  Combinatorial discovery of a lead-free morphotropic phase boundary in a thin-film piezoelectric perovskite , 2008 .

[195]  G. Carman,et al.  Thermal energy harvesting device using ferromagnetic materials , 2007 .

[196]  Michael D. McGehee,et al.  Conjugated Polymer Photovoltaic Cells , 2004 .

[197]  Li Zheng,et al.  Silicon-based hybrid cell for harvesting solar energy and raindrop electrostatic energy , 2014 .

[198]  N. S. Sariciftci,et al.  Conjugated polymer-based organic solar cells. , 2007, Chemical reviews.

[199]  Xiaotong Gao,et al.  Vibration energy harvesting using piezoelectric unimorph cantilevers with unequal piezoelectric and nonpiezoelectric lengths. , 2010, Applied physics letters.

[200]  Rong Chen,et al.  A rail-borne piezoelectric transducer for energy harvesting of railway vibration , 2016 .

[201]  Izhar,et al.  Hybrid acoustic energy harvesting using combined electromagnetic and piezoelectric conversion. , 2016, The Review of scientific instruments.

[202]  Han Byul Kang,et al.  (Na,K)NbO3 nanoparticle-embedded piezoelectric nanofiber composites for flexible nanogenerators , 2015 .

[203]  Qi Zhang,et al.  Thermoelectric Devices for Power Generation: Recent Progress and Future Challenges   , 2016 .

[204]  S. Kar‐Narayan,et al.  Polymer-based nanopiezoelectric generators for energy harvesting applications , 2014 .

[205]  Ryoji Funahashi,et al.  Oxide Thermoelectric Materials: A Nanostructuring Approach , 2010 .

[206]  Mohsen Hamedi,et al.  Improvements in energy harvesting capabilities by using different shapes of piezoelectric bimorphs , 2015 .

[207]  Xudong Wang,et al.  Chemical modification of polymer surfaces for advanced triboelectric nanogenerator development , 2016 .

[208]  Hong Hee Yoo,et al.  Piezoelectric energy harvesting system with magnetic pendulum movement for self-powered safety sensor of trains , 2016 .

[209]  Sang‐Jae Kim,et al.  A flexible, planar energy harvesting device for scavenging road side waste mechanical energy via the synergistic piezoelectric response of K0.5Na0.5NbO3-BaTiO3/PVDF composite films. , 2017, Nanoscale.

[210]  Yu Zhou,et al.  Design and characterization of an electromagnetic energy harvester for vehicle suspensions , 2010 .

[211]  R. Saidur,et al.  A review on nanostructures of high-temperature thermoelectric materials for waste heat recovery , 2016 .

[212]  Zongping Shao,et al.  Research progress of perovskite materials in photocatalysis- and photovoltaics-related energy conversion and environmental treatment. , 2015, Chemical Society reviews.

[213]  Yoshinori Iguchi,et al.  Trench-filled cellular parylene electret for piezoelectric transducer , 2012 .

[214]  Yuelong Yu,et al.  Energy harvesting with two parallel pinned piezoelectric membranes in fluid flow , 2016 .

[215]  Kan Junwu,et al.  Modeling and simulation of piezoelectric composite diaphragms for energy harvesting , 2009 .

[216]  Dragan Damjanovic,et al.  FERROELECTRIC, DIELECTRIC AND PIEZOELECTRIC PROPERTIES OF FERROELECTRIC THIN FILMS AND CERAMICS , 1998 .

[217]  D. Guyomar,et al.  Electrostrictive polymers for mechanical energy harvesting , 2012 .

[218]  Meurig W. Williams Triboelectric charging of insulating polymers–some new perspectives , 2012 .

[219]  Tao Jiang,et al.  Toward the blue energy dream by triboelectric nanogenerator networks , 2017 .

[220]  M. Hoffmann,et al.  Ferroelectric domains in methylammonium lead iodide perovskite thin-films , 2017 .

[221]  Zhong Lin Wang,et al.  Progress in triboelectric nanogenerators as a new energy technology and self-powered sensors , 2015 .

[222]  Adolf Acquaye,et al.  Perovskite solar cells: An integrated hybrid lifecycle assessment and review in comparison with other photovoltaic technologies , 2017 .

[223]  B. S. Sreeja,et al.  Analysis of rectangular and triangular end array type piezoelectric vibration energy harvester , 2015 .

[224]  Robert Bogue,et al.  Energy harvesting: a review of recent developments , 2015 .

[225]  O. Hansen,et al.  Screen printed PZT/PZT thick film bimorph MEMS cantilever device for vibration energy harvesting , 2011, 2011 16th International Solid-State Sensors, Actuators and Microsystems Conference.

[226]  Christopher R. Bowen,et al.  Effect of Zr/Ti ratio on microstructure and electrical properties of pyroelectric ceramics for energy harvesting applications , 2017 .

[227]  A. Chauhan,et al.  Pyroelectric materials for solar energy harvesting: a comparative study , 2015 .

[228]  Jaeyun Lee,et al.  Strain-based piezoelectric energy harvesting for wireless sensor systems in a tire , 2015 .

[229]  Zafar Hussain Ibupoto,et al.  Piezoelectric nanogenerator based on zinc oxide nanorods grown on textile cotton fabric , 2012 .

[230]  G. Lanzani,et al.  Thermoelectric characterization of flexible micro-thermoelectric generators. , 2017, The Review of scientific instruments.

[231]  Muhammad Mustafa Hussain,et al.  Review—Micro and Nano-Engineering Enabled New Generation of Thermoelectric Generator Devices and Applications , 2017 .

[232]  Sihong Wang,et al.  A Hybrid Piezoelectric Structure for Wearable Nanogenerators , 2012, Advanced materials.

[233]  Sung-Ho Shin,et al.  Piezoelectric properties of CH3NH3PbI3 perovskite thin films and their applications in piezoelectric generators , 2016 .

[234]  F. Zheng,et al.  Substantial bulk photovoltaic effect enhancement via nanolayering , 2016, Nature Communications.

[235]  Christopher R. Bowen,et al.  Pyroelectric energy harvesting for water splitting , 2017 .

[236]  Amr M. Baz,et al.  Single Degree of Freedom Shear-Mode Piezoelectric Energy Harvester , 2013 .

[237]  Feng Yan,et al.  Emerging Semitransparent Solar Cells: Materials and Device Design , 2017, Advanced materials.

[238]  Mehmet Rasit Yuce,et al.  A wearable energy harvester unit using piezoelectric–electromagnetic hybrid technique , 2017 .

[239]  Hyunjin Kim,et al.  Hybrid energy harvester based on nanopillar solar cells and PVDF nanogenerator , 2013, Nanotechnology.

[240]  Grzegorz Litak,et al.  Magnetopiezoelastic energy harvesting driven by random excitations , 2010 .

[241]  Sang‐Woo Kim,et al.  Energy harvesting based on semiconducting piezoelectric ZnO nanostructures , 2012 .

[242]  H. Hesse,et al.  Strong Efficiency Improvements in Ultra‐low‐Cost Inorganic Nanowire Solar Cells , 2010, Advanced materials.

[243]  Farid Ullah Khan,et al.  Review of non-resonant vibration based energy harvesters for wireless sensor nodes , 2016 .

[244]  Zhifeng Ren,et al.  Recent progress in half-Heusler thermoelectric materials , 2016 .

[245]  Xiaobiao Shan,et al.  A Novel Tunable Multi-Frequency Hybrid Vibration Energy Harvester Using Piezoelectric and Electromagnetic Conversion Mechanisms , 2016 .

[246]  M. Guan,et al.  A Novel Frequency Tunable Mechanism for Piezoelectric Energy Harvesting System , 2015 .

[247]  M. Kim,et al.  Design of wearable hybrid generator for harvesting heat energy from human body depending on physiological activity , 2017 .

[248]  Qiang Li,et al.  Enhanced temperature stability in Tb-doped (Ba0.99Ca0.01)(Ti0.98Zr0.02)O3 lead free ceramics , 2015 .

[249]  Alperen Toprak,et al.  Piezoelectric energy harvesting: State-of-the-art and challenges , 2014 .

[250]  J. Fuh,et al.  Structure and electrical properties of 〈001〉 textured (Ba0.85Ca0.15)(Ti0.9Zr0.1)O3 lead-free piezoelectric ceramics , 2012 .

[251]  R. Rostek,et al.  A review of electroplating for V–VI thermoelectric films: from synthesis to device integration , 2015 .

[252]  F. Krebs,et al.  Stability/degradation of polymer solar cells , 2008 .

[253]  G. Hayward,et al.  A theoretical study on the influence of some constituent material properties on the behavior of 1‐3 connectivity composite transducers , 1995 .

[254]  John R. Tumbleston,et al.  Minority carrier transport length of electrodeposited Cu2O in ZnO/Cu2O heterojunction solar cells , 2011 .

[255]  Venkateswaran Vivekananthan,et al.  A sustainable freestanding biomechanical energy harvesting smart backpack as a portable-wearable power source , 2017 .

[256]  D. Niu,et al.  An infrared-driven flexible pyroelectric generator for non-contact energy harvester. , 2016, Nanoscale.

[257]  Ulrich Schmid,et al.  Analysis and modeling of a piezoelectric energy harvester stimulated by β-emitting radioisotopes , 2011 .

[258]  T. Takagi,et al.  Thermal energy harvesting by high frequency actuation of magnetic shape memory alloy films , 2015, 2015 Transducers - 2015 18th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS).

[259]  Dibin Zhu,et al.  A comparison of power output from linear and nonlinear kinetic energy harvesters using real vibration data , 2013 .

[260]  Ping Zhao,et al.  Piezoelectric and Triboelectric Dual Effects in Mechanical-Energy Harvesting Using BaTiO3/Polydimethylsiloxane Composite Film. , 2016, ACS applied materials & interfaces.

[261]  Chengkuo Lee,et al.  Hybrid energy harvester based on piezoelectric and electromagnetic mechanisms , 2010 .

[262]  Jinsong Huang,et al.  Strained hybrid perovskite thin films and their impact on the intrinsic stability of perovskite solar cells , 2017, Science Advances.

[263]  M. Ohtaki Recent aspects of oxide thermoelectric materials for power generation from mid-to-high temperature heat source , 2011 .

[264]  B. Ploss,et al.  Pyroelectric properties of BiFeO3 ceramics prepared by a modified solid-state-reaction method , 2010 .

[265]  Michael Grätzel,et al.  Recent advances in sensitized mesoscopic solar cells. , 2009, Accounts of chemical research.

[266]  Zdenek Hadas,et al.  A study of kinetic energy harvesting for biomedical application in the head area , 2016 .

[267]  Massimo De Vittorio,et al.  AlN-based flexible piezoelectric skin for energy harvesting from human motion , 2016 .

[268]  Santanu Chattopadhyay,et al.  Recent advances in CNT/graphene based thermoelectric polymer nanocomposite: A proficient move towards waste energy harvesting , 2016 .

[269]  Henry J. Snaith,et al.  The renaissance of dye-sensitized solar cells , 2012, Nature Photonics.

[270]  Arshad Hassan,et al.  A flat-panel-shaped hybrid piezo/triboelectric nanogenerator for ambient energy harvesting , 2017, Nanotechnology.

[271]  Chen Xu,et al.  Compact Hybrid Cell Based on a Convoluted Nanowire Structure for Harvesting Solar and Mechanical Energy , 2011, Advanced materials.

[272]  Haixia Zhang,et al.  Low frequency PVDF piezoelectric energy harvester with combined d31 and d33 operating modes , 2013, The 8th Annual IEEE International Conference on Nano/Micro Engineered and Molecular Systems.

[273]  Sang-Woo Kim,et al.  Recent Progress on Flexible Triboelectric Nanogenerators for SelfPowered Electronics. , 2015, ChemSusChem.

[274]  A. G. Chynoweth,et al.  Surface Space-Charge Layers in Barium Titanate , 1956 .

[275]  C. Kang,et al.  Flexible piezoelectric polymer-based energy harvesting system for roadway applications , 2017 .

[276]  Yuji Suzuki,et al.  Recent progress in MEMS electret generator for energy harvesting , 2011 .

[277]  Henry A. Sodano,et al.  Energy harvesting through a backpack employing a mechanically amplified piezoelectric stack , 2008 .

[278]  Ulrich Schmid,et al.  Unimorph and bimorph piezoelectric energy harvester stimulated by β-emitting radioisotopes: a modeling study , 2014 .

[279]  Peng Zeng,et al.  Kinetic Energy Harvesting Using Piezoelectric and Electromagnetic Technologies—State of the Art , 2010, IEEE Transactions on Industrial Electronics.

[280]  Xi Chen,et al.  1.6 V nanogenerator for mechanical energy harvesting using PZT nanofibers. , 2010, Nano letters.

[281]  Gangjian Tan,et al.  Rationally Designing High-Performance Bulk Thermoelectric Materials. , 2016, Chemical reviews.

[282]  K. Mandal,et al.  Evidence of Enhanced Oxygen Vacancy Defects Inducing Ferromagnetism in Multiferroic CaMn7O12 Manganite with Sintering Time , 2017 .

[283]  Noureddine Bouhaddi,et al.  Enhancement of the performance of a hybrid nonlinear vibration energy harvester based on piezoelectric and electromagnetic transductions , 2014 .

[284]  Guangzu Zhang,et al.  Characteristics of the PMnN-PMS-PZT pyroelectric ceramics for energy harvesting devices , 2016 .

[285]  Chao Hu,et al.  Design optimization under uncertainty and speed variability for a piezoelectric energy harvester powering a tire pressure monitoring sensor , 2017 .

[286]  Wang Chen,et al.  Piezoelectric and electromagnetic hybrid energy harvester for powering wireless sensor nodes in smart grid , 2015 .

[287]  Hongduo Zhao,et al.  A comparative analysis of piezoelectric transducers for harvesting energy from asphalt pavement , 2012 .

[288]  Zhiyuan Gao,et al.  Growth of ZnO nanotube arrays and nanotube based piezoelectric nanogenerators , 2009 .

[289]  Jong-Hyun Ahn,et al.  Graphene Based Nanogenerator for Energy Harvesting , 2013 .

[290]  Jaesung Song,et al.  Applications of Self Power Device Using Piezoelectric Triple-Morph Cantilever for Energy Harvesting , 2010 .

[291]  A. Polman,et al.  Photovoltaic materials: Present efficiencies and future challenges , 2016, Science.

[292]  Yang Yang,et al.  Polymer solar cells , 2012, Nature Photonics.

[293]  Jie Zhu,et al.  A comprehensive review of thermoelectric technology: materials, applications, modelling and performance improvement , 2016 .

[294]  James F. Scott,et al.  Physics and Applications of Bismuth Ferrite , 2009 .

[295]  G. Nolas,et al.  High temperature thermoelectric properties of Ba_xYb_yFe_3CoSb_12 p-type skutterudites , 2015 .

[296]  L. Gammaitoni,et al.  Nonlinear energy harvesting. , 2008, Physical review letters.

[297]  L. Petit,et al.  Hybrid energy harvesting systems, using piezoelectric elements and dielectric polymers , 2016 .

[298]  Huikai Zhong,et al.  Graphene based two dimensional hybrid nanogenerator for concurrently harvesting energy from sunlight and water flow , 2016 .

[299]  Jari Juuti,et al.  Combined electrical and electromechanical simulations of a piezoelectric cymbal harvester for energy harvesting from walking , 2014 .

[300]  Scott D. Moss,et al.  Scaling and power density metrics of electromagnetic vibration energy harvesting devices , 2015 .

[301]  Zhou Li,et al.  Energy Harvesting from the Animal/Human Body for Self-Powered Electronics. , 2017, Annual review of biomedical engineering.

[302]  D. Markley,et al.  Energy Harvesting Using a Piezoelectric “Cymbal” Transducer in Dynamic Environment , 2004 .

[303]  Long Lin,et al.  Fully Packaged Blue Energy Harvester by Hybridizing a Rolling Triboelectric Nanogenerator and an Electromagnetic Generator. , 2016, ACS nano.

[304]  Nicolo' Zampieri,et al.  Design, Simulation, and Testing of Energy Harvesters With Magnetic Suspensions for the Generation of Electricity From Freight Train Vibrations , 2012 .

[305]  Long Lin,et al.  A Nanogenerator for Energy Harvesting from a Rotating Tire and its Application as a Self‐Powered Pressure/Speed Sensor , 2011, Advanced materials.

[306]  C. Tugui,et al.  Stretchable Energy Harvesting Devices: Attempts To Produce High-Performance Electrodes , 2017 .

[307]  Kai Zhu,et al.  Interface band structure engineering by ferroelectric polarization in perovskite solar cells , 2015 .

[308]  Tiejun Zhu,et al.  New Insights into Intrinsic Point Defects in V2VI3 Thermoelectric Materials , 2016, Advanced science.

[309]  Alper Erturk,et al.  Hybrid piezoelectric-inductive flow energy harvesting and dimensionless electroaeroelastic analysis for scaling , 2013 .

[310]  William W. Clark,et al.  Analysis of piezoelectric circular diaphragm energy harvesters for use in a pressure fluctuating system , 2010 .

[311]  Wei Wang,et al.  r-Shaped hybrid nanogenerator with enhanced piezoelectricity. , 2013, ACS nano.

[312]  Lukai Guo,et al.  Potentials of piezoelectric and thermoelectric technologies for harvesting energy from pavements , 2017 .

[313]  Gary Hodes,et al.  Perovskite-Based Solar Cells , 2013, Science.

[314]  Christopher R. Bowen,et al.  Wind-driven pyroelectric energy harvesting device , 2016 .

[315]  Zhong Lin Wang,et al.  Nanotechnology-enabled energy harvesting for self-powered micro-/nanosystems. , 2012, Angewandte Chemie.

[316]  Jae-Eung Oh,et al.  Optimization and performance improvement of an electromagnetic-type energy harvester with consideration of human walking vibration , 2016, Journal of the Korean Physical Society.

[317]  Chen Gangjin,et al.  A micro-oscillation-driven energy harvester based on a flexible bipolar electret membrane with high output power , 2017 .

[318]  Meiling Zhu,et al.  A sandwiched piezoelectric transducer with flex end-caps for energy harvesting in large force environments , 2017 .

[319]  T. J. McMahon,et al.  History of accelerated and qualification testing of terrestrial photovoltaic modules: A literature review , 2009 .

[320]  Jayant Sirohi,et al.  Harvesting Wind Energy Using a Galloping Piezoelectric Beam , 2012 .

[321]  Wei Zhu,et al.  Synergistic photovoltaic–thermoelectric effect in a nanostructured CdTe/Bi2Te3 heterojunction for hybrid energy harvesting , 2016 .

[322]  Ye Zhang,et al.  Piezoelectric-based energy harvesting in bridge systems , 2014 .

[323]  Yuji Suzuki,et al.  Suspended electrodes for reducing parasitic capacitance in electret energy harvesters , 2013 .

[324]  Antonio Concilio,et al.  An original device for train bogie energy harvesting: a real application scenario , 2015 .

[325]  Qingqing Shen,et al.  Multifunctional power unit by hybridizing contact-separate triboelectric nanogenerator, electromagnetic generator and solar cell for harvesting blue energy , 2017 .

[326]  N. M. White,et al.  Numerical Model of a Non-Contact Piezoelectric Energy Harvester for Rotating Objects , 2012, IEEE Sensors Journal.

[327]  William W. Clark,et al.  Modeling and experimental validation of unimorph piezoelectric cymbal design in energy harvesting , 2013 .

[328]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[329]  Sang-Gook Kim,et al.  Energy harvesting MEMS device based on thin film piezoelectric cantilevers , 2006 .

[330]  J. Berakdar,et al.  Efficient thermal energy harvesting using nanoscale magnetoelectric heterostructures , 2016, 1602.00433.

[331]  C. Choy,et al.  Piezoelectric and pyroelectric properties of PZT/P(VDF-TrFE) composites with constituent phases poled in parallel or antiparallel directions. , 2000, IEEE transactions on ultrasonics, ferroelectrics, and frequency control.

[332]  Niyazi Serdar Sariciftci,et al.  Organic solar cells: An overview , 2004 .

[333]  Colin R. McInnes,et al.  Enhanced Vibrational Energy Harvesting Using Non-linear Stochastic Resonance , 2008 .

[334]  Xuezheng Jiang,et al.  Piezoelectric energy harvesting from traffic-induced pavement vibrations , 2014 .

[335]  C. Bowen,et al.  Characterization and Modeling of Meshed Electrodes on Free Standing Polyvilylidene Difluoride (PVDF) Films for Enhanced Pyroelectric Energy Harvesting , 2016, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control.

[336]  Jingkun Xu,et al.  Poly(3,4-ethylenedioxythiophene) as promising organic thermoelectric materials: A mini-review , 2012 .

[337]  Zhong Lin Wang,et al.  Hybrid energy cell for harvesting mechanical energy from one motion using two approaches , 2015 .

[338]  S. Boisseau,et al.  Optimization of an electret-based energy harvester , 2010, 1111.3102.

[339]  Yunlong Zi,et al.  A Water‐Proof Triboelectric–Electromagnetic Hybrid Generator for Energy Harvesting in Harsh Environments , 2016 .

[340]  Hyungkwan Jang,et al.  Piezoelectric energy harvesting system for the vertical vibration of superconducting Maglev train , 2013, Journal of Electroceramics.

[341]  Chengkuo Lee,et al.  Flow sensing and energy harvesting characteristics of a wind-driven piezoelectric Pb(Zr0.52, Ti0.48)O 3 microcantilever , 2014 .

[342]  Majid Sarrafzadeh,et al.  Pedometers Without Batteries: An Energy Harvesting Shoe , 2016, IEEE Sensors Journal.

[343]  Daoben Zhu,et al.  Recent advances in organic polymer thermoelectric composites , 2017 .

[344]  M. Green,et al.  The emergence of perovskite solar cells , 2014, Nature Photonics.

[345]  Zhong Lin Wang,et al.  Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays , 2006, Science.

[346]  B. H. Stark,et al.  Review of Power Conditioning for Kinetic Energy Harvesting Systems , 2012, IEEE Transactions on Power Electronics.

[347]  Mohammad Hossein Anisi,et al.  A Review on energy management schemes in energy harvesting wireless sensor networks , 2017 .

[348]  M. Kanatzidis,et al.  New and old concepts in thermoelectric materials. , 2009, Angewandte Chemie.

[349]  M. Ferri,et al.  Thermoelectric Materials in MEMS and NEMS: A Review , 2011 .

[350]  Dung-An Wang,et al.  A shear mode piezoelectric energy harvester based on a pressurized water flow , 2011 .

[351]  Neil D. Sims,et al.  Energy harvesting from the nonlinear oscillations of magnetic levitation , 2009 .

[352]  Zhiyu Wen,et al.  A low-frequency piezoelectric-electromagnetic-triboelectric hybrid broadband vibration energy harvester , 2017 .

[353]  Minbaek Lee,et al.  Nanowire-quantum dot hybridized cell for harvesting sound and solar energies , 2010 .

[354]  Licheng Deng,et al.  A vibration energy harvester using AlN piezoelectric cantilever array , 2015 .

[355]  Taylor D. Sparks,et al.  Data-Driven Review of Thermoelectric Materials: Performance and Resource Considerations , 2013 .

[356]  Yoon Seok Yang,et al.  Harvesting Energy from the Counterbalancing (Weaving) Movement in Bicycle Riding , 2012, Sensors.

[357]  K. Biswas,et al.  High performance thermoelectric materials and devices based on GeTe , 2016 .

[358]  Kanwar Bharat Singh,et al.  Piezoelectric vibration energy harvesting system with an adaptive frequency tuning mechanism for intelligent tires , 2012 .

[359]  Simiao Niu,et al.  Hybridizing triboelectrification and electromagnetic induction effects for high-efficient mechanical energy harvesting. , 2014, ACS nano.

[360]  Zhong Lin Wang,et al.  Single-electrode-based rotationary triboelectric nanogenerator and its applications as self-powered contact area and eccentric angle sensors , 2015 .

[361]  D. Inman,et al.  Miniature Contactless Piezoelectric Wind Turbine , 2015 .

[362]  B. Guiffard,et al.  Commercial piezoelectric unimorph diaphragm as a magnetic energy harvester , 2012 .

[363]  Gang Chen,et al.  Bulk nanostructured thermoelectric materials: current research and future prospects , 2009 .

[364]  C. Bowen,et al.  Energy Harvesting Technologies for Tire Pressure Monitoring Systems , 2015 .

[365]  Weishu Liu,et al.  High-performance nanostructured thermoelectric materials , 2010 .

[366]  Santiago Orrego,et al.  Harvesting ambient wind energy with an inverted piezoelectric flag , 2017 .

[367]  Ravi Anant Kishore,et al.  Ultra-Low Wind Speed Piezoelectric Windmill , 2014 .

[368]  Fei Wang,et al.  An electret-based energy harvesting device with a wafer-level fabrication process , 2013 .

[369]  Jan M. Rabaey,et al.  A study of low level vibrations as a power source for wireless sensor nodes , 2003, Comput. Commun..

[370]  J. L. Curiel-Sosa,et al.  Piezoelectric energy harvester composite under dynamic bending with implementation to aircraft wingbox structure , 2016 .

[371]  T. Kitamura,et al.  Strain-induced ferroelectricity and lattice coupling in BaSnO3 and SrSnO3. , 2017, Physical chemistry chemical physics : PCCP.

[372]  Rafael Sánchez,et al.  Thermoelectric energy harvesting with quantum dots , 2014, Nanotechnology.

[373]  Anders Hagfeldt,et al.  Dye-sensitized solar cells. , 2010, Chemical reviews.

[374]  Zhifeng Ren,et al.  Enhancement of Thermoelectric Figure‐of‐Merit by a Bulk Nanostructuring Approach , 2010 .

[375]  Ryoji Funahashi,et al.  Thermoelectric Ceramics for Energy Harvesting , 2013 .

[376]  Yong-Jun Kim,et al.  Modeling of a honeycomb-shaped pyroelectric energy harvester for human body heat harvesting , 2015 .

[377]  Yanming Sun,et al.  Inverted Polymer Solar Cells Integrated with a Low‐Temperature‐Annealed Sol‐Gel‐Derived ZnO Film as an Electron Transport Layer , 2011, Advanced materials.

[378]  Daniel J. Inman,et al.  Piezoelectric energy harvesting from broadband random vibrations , 2009 .

[379]  Seong Kwang Hong,et al.  Road energy harvester designed as a macro-power source using the piezoelectric effect , 2016 .

[380]  F. Moll,et al.  Optimum Piezoelectric Bending Beam Structures for Energy Harvesting using Shoe Inserts , 2005 .

[381]  Qiongfeng Shi,et al.  Broadband Energy Harvester Using Non-linear Polymer Spring and Electromagnetic/Triboelectric Hybrid Mechanism , 2017, Scientific Reports.

[382]  J. Pankove,et al.  Epitaxially grown AlN and its optical band gap , 1973 .

[383]  Yong Liu,et al.  Microstructure tailoring in nanostructured thermoelectric materials , 2016 .

[384]  Y. Xin,et al.  Shoes-equipped piezoelectric transducer for energy harvesting: A brief review , 2016 .

[385]  Litao Sun,et al.  Solution-derived ZnO nanostructures for photoanodes of dye-sensitized solar cells , 2011 .

[386]  Wei Wang,et al.  Vibration energy harvesting with a clamped piezoelectric circular diaphragm , 2012 .

[387]  Jiamei Jin,et al.  Rotational piezoelectric wind energy harvesting using impact-induced resonance , 2014 .

[388]  M. Guennou,et al.  Photovoltaics with Ferroelectrics: Current Status and Beyond , 2016, Advanced materials.

[389]  Lye Sun Woh,et al.  Spiral electrode d33 mode piezoelectric diaphragm combined with proof mass as energy harvester , 2015 .

[390]  H. Jung,et al.  Origin of Hysteresis in CH3NH3PbI3 Perovskite Thin Films , 2017 .

[391]  Mupeng Zheng,et al.  High Energy Density Lead-Free Piezoelectric Ceramics for Energy Harvesting and Derived from a Sol–Gel Route , 2016 .

[392]  Yang Bai,et al.  Ferroelectric, pyroelectric, and piezoelectric properties of a photovoltaic perovskite oxide , 2017 .

[393]  Mario Leclerc,et al.  Conducting polymers: Efficient thermoelectric materials , 2011 .

[394]  Zhou Fang,et al.  A rotational piezoelectric energy harvester for efficient wind energy harvesting , 2017 .

[395]  Song-Yul Choe,et al.  Piezoelectric Energy Harvesting Device in a Viscous Fluid for High Amplitude Vibration Application , 2008 .

[396]  Xiaobiao Shan,et al.  A new energy harvester using a piezoelectric and suspension electromagnetic mechanism , 2013 .

[397]  Seeram Ramakrishna,et al.  A review on the enhancement of figure of merit from bulk to nano-thermoelectric materials , 2013 .

[398]  D. Guyomar,et al.  Optimization of energy harvesting conversion using the hybridization of electrostrictive polymers and electrets , 2013 .

[399]  Amen Agbossou,et al.  On thermoelectric and pyroelectric energy harvesting , 2009 .

[400]  P. Hagedorn,et al.  A piezoelectric bistable plate for nonlinear broadband energy harvesting , 2010 .

[401]  Jongbaeg Kim,et al.  A flexible hybrid strain energy harvester using piezoelectric and electrostatic conversion , 2014 .

[402]  Hyun Suk Jung,et al.  Perovskite solar cells: from materials to devices. , 2015, Small.

[403]  A. Shakouri Recent Developments in Semiconductor Thermoelectric Physics and Materials , 2011 .

[404]  Jayant Sirohi,et al.  Piezoelectric wind energy harvester for low-power sensors , 2011 .

[405]  M. Kanatzidis Nanostructured Thermoelectrics: The New Paradigm?† , 2010 .

[406]  Tae Hyun Sung,et al.  Feasibility study of impact-based piezoelectric road energy harvester for wireless sensor networks in smart highways , 2017 .

[407]  Dan Oron,et al.  Tetragonal CH3NH3PbI3 is ferroelectric , 2017, Proceedings of the National Academy of Sciences.

[408]  Benoit Guiffard,et al.  Modeling and experimentation on an electrostrictive polymer composite for energy harvesting , 2010, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[409]  Chen Gangjin,et al.  A Flexible Electret Membrane with Persistent Electrostatic Effect and Resistance to Harsh Environment for Energy Harvesting , 2017, Scientific Reports.

[410]  R. Vaish,et al.  A numerical investigation on exergy analyses of a pyroelectric tryglycine sulfate (TGS)-based solar energy harvesting system , 2016 .

[411]  I. Oh,et al.  Piezoelectric thin films: an integrated review of transducers and energy harvesting , 2016 .

[412]  Rui Zhang,et al.  Effect of Li 2 CO 3 addition in BiFeO 3 -BaTiO 3 ceramics on the sintering temperature, electrical properties and phase transition , 2018 .

[413]  B. Mann,et al.  Nonlinear dynamics for broadband energy harvesting: Investigation of a bistable piezoelectric inertial generator , 2010 .

[414]  C. Bowen,et al.  Graphene Ink Laminate Structures on Poly(vinylidene difluoride) (PVDF) for Pyroelectric Thermal Energy Harvesting and Waste Heat Recovery. , 2017, ACS applied materials & interfaces.

[415]  Soon-Duck Kwon,et al.  A T-shaped piezoelectric cantilever for fluid energy harvesting , 2010 .

[416]  Silvia Conforto,et al.  Nanogenerators for Human Body Energy Harvesting. , 2017, Trends in biotechnology.

[417]  Chunsheng Yang,et al.  Development of high performance piezoelectric d33 mode MEMS vibration energy harvester based on PMN-PT single crystal thick film , 2014 .

[418]  Seong Kwang Hong,et al.  Establishment of the evaluation standard and the analysis technique for the tip mass method in piezoelectric energy - harvesting systems , 2014 .

[419]  H. Goldsmid,et al.  Bismuth Telluride and Its Alloys as Materials for Thermoelectric Generation , 2014, Materials.

[420]  Saibal Roy,et al.  A micro electromagnetic generator for vibration energy harvesting , 2007 .

[421]  W. Xu,et al.  Fortieth Annual General Meeting and Dinner of the Scottish Region , 1975 .

[422]  Wonjoon Choi,et al.  Thermoelectric–pyroelectric hybrid energy generation from thermopower waves in core–shell structured carbon nanotube–PZT nanocomposites , 2017, Nanotechnology.

[423]  Chang Kyu Jeong,et al.  Highly‐Efficient, Flexible Piezoelectric PZT Thin Film Nanogenerator on Plastic Substrates , 2014, Advanced materials.

[424]  Zhihua Feng,et al.  Piezoelectric Wind-Energy-Harvesting Device with Reed and Resonant Cavity , 2010 .

[425]  Alex K.-Y. Jen,et al.  Rational Design of Advanced Thermoelectric Materials , 2013 .

[426]  P. Bandaru,et al.  Nanostructured Thermoelectrics , 2016 .

[427]  Ryan L. Harne,et al.  A review of the recent research on vibration energy harvesting via bistable systems , 2013 .

[428]  Fred D. Discenzo,et al.  Resonant packaged piezoelectric power harvester for machinery health monitoring , 2005, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[429]  S. H. Zaferani Using silane products on fabrication of polymer-based nanocomposite for thin film thermoelectric devices , 2017 .

[430]  Siyi Wang,et al.  Radio‐frequency energy harvesting potential: a stochastic analysis , 2013, Trans. Emerg. Telecommun. Technol..

[431]  Jan T. Bialasiewicz,et al.  Power-Electronic Systems for the Grid Integration of Renewable Energy Sources: A Survey , 2006, IEEE Transactions on Industrial Electronics.

[432]  Chuan Tian,et al.  Energy harvesting from low frequency applications using piezoelectric materials , 2014 .

[433]  Xinyu Liu,et al.  High piezoelectric coefficient and temperature stability of Ga2O3-doped (Ba0.99Ca0.01)(Zr0.02Ti0.98)O3 lead-free ceramics by low-temperature sintering , 2013 .

[434]  Yaniv Gelbstein,et al.  Functional Graded Germanium–Lead Chalcogenide‐Based Thermoelectric Module for Renewable Energy Applications , 2015 .

[435]  Xiuhan Li,et al.  3D fiber-based hybrid nanogenerator for energy harvesting and as a self-powered pressure sensor. , 2014, ACS nano.

[436]  Jari Juuti,et al.  Energy Harvesting with a Bimorph Type Piezoelectric Diaphragm Multilayer Structure and Mechanically Induced Pre‐stress , 2016 .

[437]  Jong-Hyun Ahn,et al.  A high performance PZT ribbon-based nanogenerator using graphene transparent electrodes , 2012 .

[438]  Philip S. Casey,et al.  Research progress on polymer–inorganic thermoelectric nanocomposite materials , 2012 .

[439]  Fahad A. Al-Sulaiman,et al.  Recent progress and remaining challenges in organometallic halides based perovskite solar cells , 2017 .

[440]  Girish Kumar Singh,et al.  Solar power generation by PV (photovoltaic) technology: A review , 2013 .

[441]  Cesare Stefanini,et al.  Piezoelectric Energy Harvesting Solutions , 2014, Sensors.

[442]  Lei Li,et al.  Analysis of Energy Harvesting Performance for $d_{15}$ Mode Piezoelectric Bimorph in Series Connection Based on Timoshenko Beam Model , 2015, IEEE/ASME Transactions on Mechatronics.

[443]  R. Vaglio,et al.  Combined experimental and theoretical investigation of optical, structural and electronic properties of CH3NH3SnX3 thin films (X=Cl,Br) , 2008 .

[444]  Wen Zhiyu,et al.  A Piezoelectric Wind Energy Harvester for Wireless Sensor Networks , 2013 .

[445]  Jun Chen,et al.  Triboelectric–Pyroelectric–Piezoelectric Hybrid Cell for High‐Efficiency Energy‐Harvesting and Self‐Powered Sensing , 2015, Advanced materials.

[446]  Bongyoung Yoo,et al.  Recent progress in electrodeposition of thermoelectric thin films and nanostructures , 2008 .

[447]  Wei Wang,et al.  Energy harvester array using piezoelectric circular diaphragm for rail vibration , 2014 .

[448]  Yasuyoshi Saito,et al.  Lead-free piezoceramics , 2004, Nature.

[449]  Sondipon Adhikari,et al.  Adaptive tuned piezoelectric MEMS vibration energy harvester using an electrostatic device , 2015 .

[450]  Adelino Ferreira,et al.  Road pavement energy harvesting: An evaluation methodology for new and existing vehicle-derived mechanical energy collectors , 2017 .

[451]  D. J. Clark,et al.  Hybrid germanium iodide perovskite semiconductors: active lone pairs, structural distortions, direct and indirect energy gaps, and strong nonlinear optical properties. , 2015, Journal of the American Chemical Society.

[452]  A. Paul Blessington Selvadurai,et al.  Investigation of structural and optical spectroscopy of 5 % Pr doped (Bi0.5Na0.5) TiO3 ferroelectric ceramics: site depended study , 2015, Journal of Materials Science: Materials in Electronics.

[453]  W. Jo,et al.  Perspective on the Development of Lead‐free Piezoceramics , 2009 .

[454]  Ebrahim Esmailzadeh,et al.  Modeling and performance analysis of duck‐shaped triboelectric and electromagnetic generators for water wave energy harvesting , 2017 .

[455]  Long Lin,et al.  Flexible hybrid cell for simultaneously harvesting thermal and mechanical energies , 2013 .

[456]  Mohammad H. Malakooti,et al.  Piezoelectric energy harvesting through shear mode operation , 2015 .

[457]  Kenji Uchino,et al.  Modeling of Piezoelectric Energy Harvesting Using Cymbal Transducers , 2006 .

[458]  Xiaofeng Wang,et al.  Above 1% efficiency of a ferroelectric solar cell based on the Pb(Zr,Ti)O3 film , 2014 .

[459]  Hyeoungwoo Kim,et al.  Small scale windmill , 2007 .

[460]  K. Miyazaki,et al.  Thermoelectric and Structural Characterization of Al-Doped ZnO/Y₂O₃ Multilayers. , 2017, Journal of nanoscience and nanotechnology.

[461]  Hong Guo,et al.  Piezoelectric scattering limited mobility of hybrid organic-inorganic perovskites CH3NH3PbI3 , 2017, Scientific Reports.

[462]  Yi Chiu,et al.  Flat and robust out-of-plane vibrational electret energy harvester , 2012 .

[463]  Liwei Lin,et al.  High quality Mn-doped (Na,K)NbO3 nanofibers for flexible piezoelectric nanogenerators. , 2014, ACS applied materials & interfaces.

[464]  J. Jia,et al.  Bandgap tuning of [KNbO3]1−x[BaCo1/2Nb1/2O3−δ]x ferroelectrics , 2016 .

[465]  Daniel J. Inman,et al.  An experimentally validated bimorph cantilever model for piezoelectric energy harvesting from base excitations , 2009 .

[466]  Zhangxian Deng,et al.  Review of magnetostrictive vibration energy harvesters , 2017 .

[467]  Y. H. Jeong,et al.  High energy-density 0.72Pb(Zr0.47Ti0.53)O3-0.28Pb[(Zn0.45Ni0.55)1/3Nb2/3]O3 thick films fabricated by tape casting for energy-harvesting-device applications , 2013 .

[468]  Jiangyu Li,et al.  Photo-induced ferroelectric switching in perovskite CH3NH3PbI3 films. , 2017, Nanoscale.

[469]  Chris Van Hoof,et al.  Optimization of a piezoelectric unimorph for shock and impact energy harvesting , 2007 .

[470]  Yamin Leprince-Wang,et al.  A flexible electrostatic kinetic energy harvester based on electret films of electrospun nanofibers , 2017 .

[471]  Yirong Lin,et al.  Feasibility study of thermal energy harvesting using lead free pyroelectrics , 2016 .

[472]  P. Lund,et al.  Device stability of perovskite solar cells – A review , 2017 .

[473]  Yonas Tadesse,et al.  Multimodal Energy Harvesting System: Piezoelectric and Electromagnetic , 2009 .

[474]  C. Uher,et al.  Recent advances in high-performance bulk thermoelectric materials , 2016 .

[475]  A. Rappe,et al.  First-principles study of band gap engineering via oxygen vacancy doping in perovskite ABB'O₃ solid solutions , 2011 .

[476]  Shiqiao Gao,et al.  An analysis of the coupling effect for a hybrid piezoelectric and electromagnetic energy harvester , 2014 .

[477]  Karla Mossi,et al.  Experimental analysis of radiation heat–based energy harvesting through pyroelectricity , 2014 .

[478]  Siu Wing Or,et al.  Energy harvesting using a modified rectangular cymbal transducer based on 0.71Pb(Mg1/3Nb2/3)O3–0.29PbTiO3 single crystal , 2010 .

[479]  Chieh-Min Wang,et al.  A magnetic/piezoelectric-based thermal energy harvester , 2013, Smart Structures.

[480]  X. Ren,et al.  Large piezoelectric effect in Pb-free ceramics. , 2009, Physical review letters.

[481]  Patrick Hu,et al.  Validation of a hybrid electromagnetic–piezoelectric vibration energy harvester , 2016 .

[482]  Nan-Chyuan Tsai,et al.  Human powered MEMS-based energy harvest devices , 2012 .

[483]  Orphée Cugat,et al.  Magnetostrictive–piezoelectric composite structures for energy harvesting , 2011 .

[484]  K. Uchino,et al.  Piezoelectric Energy Harvesting under High Pre-Stressed Cyclic Vibrations , 2005 .

[485]  Igor Neri,et al.  Nonlinear oscillators for vibration energy harvesting , 2009 .

[486]  Farid Ullah Khan,et al.  State of the art in acoustic energy harvesting , 2015 .

[487]  Zhiming M. Wang,et al.  Bismuth telluride nanostructures: preparation, thermoelectric properties and topological insulating effect , 2015, Frontiers of Materials Science.

[488]  Xiucai Wang,et al.  Performance enhancement of PZT material for circular diaphragm energy harvester , 2015, Journal of Materials Science: Materials in Electronics.

[489]  Luping Yu,et al.  Recent Advances in Bulk Heterojunction Polymer Solar Cells. , 2015, Chemical reviews.

[490]  Daniel J. Inman,et al.  Energy Harvesting From Turbulence-Induced Vibration in Air Flow: Artificial Piezoelectric Grass Concept , 2011 .

[491]  J. Rath,et al.  Low temperature polycrystalline silicon: a review on deposition, physical properties and solar cell applications , 2003 .

[492]  Improper ferroelectricity in stuffed aluminate sodalites for pyroelectric energy harvesting , 2016, 1611.05115.

[493]  Jayakanth Ravichandran,et al.  Thermoelectric and thermal transport properties of complex oxide thin films, heterostructures and superlattices , 2017 .

[494]  C. Hamitouche,et al.  The Use of Piezoceramics As Electrical Energy Harvesters Within Instrumented Knee Implant During Walking , 2011, IEEE/ASME Transactions on Mechatronics.

[495]  Robert A. Taylor,et al.  Recent advances in thermoelectric materials and solar thermoelectric generators – a critical review , 2014 .

[496]  Tiejun Zhu,et al.  Compromise and Synergy in High‐Efficiency Thermoelectric Materials , 2017, Advanced materials.

[497]  M. Zhang,et al.  Highly oriented BaTiO3 film self-assembled using an interfacial strategy and its application as a flexible piezoelectric generator for wind energy harvesting , 2015 .

[498]  R. Friend,et al.  Thin-film ZnO/Cu2O solar cells incorporating an organic buffer layer , 2012 .

[499]  Yuanyuan Zhou,et al.  Direct Observation of Ferroelectric Domains in Solution-Processed CH3NH3PbI3 Perovskite Thin Films. , 2014, The journal of physical chemistry letters.

[500]  J. Chu,et al.  Band gap engineering and magnetic switching in a novel perovskite (1−x)KNbO3−xBaNb1/2Fe1/2O3 , 2017 .

[501]  D. Guyomar,et al.  Effects of copper filler sizes on the dielectric properties and the energy harvesting capability of nonpercolated polyurethane composites , 2011 .

[502]  P. Rehrig,et al.  Templated Grain Growth of Textured Piezoelectric Ceramics , 2001 .

[503]  Zhong Lin Wang,et al.  Hybrid nanogenerator for concurrently harvesting biomechanical and biochemical energy. , 2010, ACS nano.

[504]  R. Vaish,et al.  Energy and Exergy Analyses of a Pyroelectric‐Based Solar Energy Harvesting System , 2015 .

[505]  Christopher R. Bowen,et al.  Giant pyroelectric energy harvesting and a negative electrocaloric effect in multilayered nanostructures , 2016 .

[506]  G. Harbauer,et al.  Implantable physiological power supply with PVDF film , 1984 .

[507]  S. Baglio,et al.  Improved Energy Harvesting from Wideband Vibrations by Nonlinear Piezoelectric Converters , 2010 .

[508]  W. Xu,et al.  Organic Thermoelectric Materials: Emerging Green Energy Materials Converting Heat to Electricity Directly and Efficiently , 2014, Advanced materials.

[509]  M. Green,et al.  Solar cell efficiency tables (version 51) , 2018 .

[510]  Yasuhiko Arakawa,et al.  Progress in GaN-based quantum dots for optoelectronics applications , 2002 .

[511]  Xing’ao Li,et al.  Effect of Ho, Mn co-doping on the structural, optical and ferroelectric properties of BiFeO3 nanoparticles , 2017, Journal of Materials Science: Materials in Electronics.

[512]  Mohsen Hamedi,et al.  An investigation into resonant frequency of trapezoidal V-shaped cantilever piezoelectric energy harvester , 2016 .

[513]  Ran Cao,et al.  Rotating-Sleeve Triboelectric-Electromagnetic Hybrid Nanogenerator for High Efficiency of Harvesting Mechanical Energy. , 2017, ACS nano.

[514]  Dong Uk Lee,et al.  Iodide management in formamidinium-lead-halide–based perovskite layers for efficient solar cells , 2017, Science.

[515]  S. E. Prasad,et al.  A Shear-Mode Energy Harvesting Device Based on Torsional Stresses , 2014, IEEE/ASME Transactions on Mechatronics.

[516]  Han Yan,et al.  Integrated Energy-Harvesting System by Combining the Advantages of Polymer Solar Cells and Thermoelectric Devices , 2013 .

[517]  Mengdi Han,et al.  High performance triboelectric nanogenerators based on large-scale mass-fabrication technologies , 2015 .

[518]  Yang Bai,et al.  Nonlinear piezoelectric devices for broadband air-flow energy harvesting , 2015 .

[519]  U. Gibson,et al.  A Simple Two-Step Electrodeposition of Cu2O/ZnO Nanopillar Solar Cells , 2010 .

[520]  Yan Yu,et al.  Pyroelectric energy harvesting devices based-on Pb[(MnxNb1−x)1/2(MnxSb1−x)1/2]y(ZrzTi1−z)1−yO3 ceramics , 2015 .

[521]  Xiaobiao Shan,et al.  Modeling and Improvement of a Cymbal Transducer in Energy Harvesting , 2010 .

[522]  Joo-Yun Jung,et al.  Hemispherically aggregated BaTiO3 nanoparticle composite thin film for high-performance flexible piezoelectric nanogenerator. , 2014, ACS nano.

[523]  F. Zheng,et al.  Photoferroelectric and Photopiezoelectric Properties of Organometal Halide Perovskites. , 2015, The journal of physical chemistry letters.

[524]  M. Dresselhaus,et al.  New Directions for Low‐Dimensional Thermoelectric Materials , 2007 .

[525]  Q. Tang,et al.  Interfacial engineering of hybridized solar cells for simultaneously harvesting solar and rain energies , 2017 .

[526]  Benoit Guiffard,et al.  Evaluation of energy harvesting performance of electrostrictive polymer and carbon-filled terpolymer composites , 2010 .

[527]  Wei Wang,et al.  A hybrid micro vibration energy harvester with power management circuit , 2015 .

[528]  Fangping Zhuo,et al.  Phase transformations, anisotropic pyroelectric energy harvesting and electrocaloric properties of (Pb,La)(Zr,Sn,Ti)O3 single crystals. , 2017, Physical chemistry chemical physics : PCCP.

[529]  Haocheng Xiong,et al.  Piezoelectric energy harvester for public roadway: On-site installation and evaluation , 2016 .

[530]  M. Dresselhaus,et al.  Perspectives on thermoelectrics: from fundamentals to device applications , 2012 .

[531]  A. Maignan,et al.  Searching for new thermoelectric materials: some examples among oxides, sulfides and selenides , 2016, Journal of physics. Condensed matter : an Institute of Physics journal.

[532]  Fenggong Wang,et al.  Band gap engineering strategy via polarization rotation in perovskite ferroelectrics , 2014 .

[533]  D. Guyomar,et al.  Analysis of thermal energy harvesting using ferromagnetic materials , 2014 .

[534]  Manrico Fabretto,et al.  Flexible Polymer-on-Polymer Architecture for Piezo/Pyroelectric Energy Harvesting. , 2015, ACS applied materials & interfaces.

[535]  P. Gasnier,et al.  An electret-based aeroelastic flutter energy harvester , 2015 .

[536]  T. Bendikov,et al.  CH3NH3PbBr3 is not pyroelectric, excluding ferroelectric-enhanced photovoltaic performance , 2016 .

[537]  Qingjie Zhang,et al.  Recent Advances in Nanostructured Thermoelectric Half-Heusler Compounds , 2012, Nanomaterials.

[538]  E. Halvorsen Energy Harvesters Driven by Broadband Random Vibrations , 2008, Journal of Microelectromechanical Systems.

[539]  Majid Sarrafzadeh,et al.  Detection of Gestures Associated With Medication Adherence Using Smartwatch-Based Inertial Sensors , 2016, IEEE Sensors Journal.

[540]  J. Fréchet,et al.  Polymer-fullerene composite solar cells. , 2008, Angewandte Chemie.

[541]  Giuseppe Quaranta,et al.  Energy harvesting from electrospun piezoelectric nanofibers for structural health monitoring of a cable-stayed bridge , 2016 .

[542]  Ying Dong,et al.  Energy harvester array using piezoelectric circular diaphragm for broadband vibration , 2014 .

[543]  Timothy C. Green,et al.  Energy Harvesting From Human and Machine Motion for Wireless Electronic Devices , 2008, Proceedings of the IEEE.

[544]  Norman M. Wereley,et al.  Energy Harvesting Devices Using Macro-fiber Composite Materials , 2010 .

[545]  V. Fridkin Parity nonconservation and bulk photovoltaic effect in the crystal without symmetry center , 2013, Proceedings of ISAF-ECAPD-PFM 2012.

[546]  Zhong Lin Wang,et al.  Triboelectric nanogenerators as self-powered active sensors , 2015 .

[547]  Ping Li,et al.  Modeling and analysis of hybrid piezoelectric and electromagnetic energy harvesting from random vibrations , 2015 .

[548]  Hanim Salleh,et al.  New simulation approach for tuneable trapezoidal and rectangular piezoelectric bimorph energy harvesters , 2017 .

[549]  Hyun Suk Jung,et al.  Ferroelectric Polarization in CH3NH3PbI3 Perovskite. , 2015, The journal of physical chemistry letters.

[550]  Ting Quan,et al.  Hybrid electromagnetic–triboelectric nanogenerator for harvesting vibration energy , 2015, Nano Research.

[551]  Paul Cahill,et al.  Energy Harvesting from Train-Induced Response in Bridges , 2014 .

[552]  R. Chetty,et al.  Tetrahedrites as thermoelectric materials: an overview , 2015 .

[553]  Hwan R. Jo,et al.  Phase transformation based pyroelectric waste heat energy harvesting with improved practicality , 2016 .

[554]  Shijun Jia,et al.  Polymer–Fullerene Bulk‐Heterojunction Solar Cells , 2009, Advanced materials.

[555]  Kyung-Hwan Park,et al.  Energy harvesting from ambient electromagnetic wave using human body as antenna , 2013 .

[556]  Gursel Alici,et al.  A review on performance enhancement techniques for ambient vibration energy harvesters , 2017 .

[557]  Jun‐Bo Yoon,et al.  Self-cleaning hybrid energy harvester to generate power from raindrop and sunlight , 2015 .

[558]  T. Yang,et al.  Optimization of energy harvesting based on the uniform deformation of piezoelectric ceramic , 2016 .

[559]  N. Muensit,et al.  Enhanced strain response and energy harvesting capabilities of electrostrictive polyurethane composites filled with conducting polyaniline , 2016 .

[560]  Wei Huang,et al.  Bandgap tuning of multiferroic oxide solar cells , 2014, Nature Photonics.

[561]  D. Guyomar,et al.  Pyroelectric energy conversion: Optimization principles , 2008, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[562]  Tae Yun Kim,et al.  All-in-one energy harvesting and storage devices , 2016 .

[563]  Jin-Woo Han,et al.  Hybrid energy harvester with simultaneous triboelectric and electromagnetic generation from an embedded floating oscillator in a single package , 2016 .

[564]  Chang-Hyeon Ji,et al.  Macro fiber composite-based low frequency vibration energy harvester , 2015 .

[565]  G. Zou,et al.  Nano piezoelectric/piezomagnetic energy harvester with surface effect based on thickness shear mode , 2015 .

[566]  Chunhui Huang,et al.  Mixed‐Organic‐Cation Tin Iodide for Lead‐Free Perovskite Solar Cells with an Efficiency of 8.12% , 2017, Advanced science.

[567]  Kamal K. Kar,et al.  Recent advances in thermoelectric materials , 2016 .

[568]  X. D. Xie,et al.  Wind energy harvesting with a piezoelectric harvester , 2013 .

[569]  Yaowen Yang,et al.  A nonlinear piezoelectric energy harvester with magnetic oscillator , 2012 .

[570]  John A. Rogers,et al.  Recent progress in flexible and stretchable piezoelectric devices for mechanical energy harvesting, sensing and actuation , 2016 .

[571]  Daochun Li,et al.  Energy harvesting by means of flow-induced vibrations on aerospace vehicles , 2016 .

[572]  Dina Simunic,et al.  eWALL radiofrequency energy harvesting system , 2015, 2015 IEEE International Black Sea Conference on Communications and Networking (BlackSeaCom).

[573]  E. Guglielmelli,et al.  Optimization of kinetic energy harvesters design for fully implantable Cochlear Implants , 2011, 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[574]  Samir Mekid,et al.  Energy Harvesting from Ambient Radio Frequency: Is it Worth it? , 2017 .

[575]  A. Bell,et al.  Synthesis of nano-structured Bi1−xBaxFeO3 ceramics with enhanced magnetic and electrical properties , 2015 .

[576]  Holger Kleinke,et al.  New bulk Materials for Thermoelectric Power Generation: Clathrates and Complex Antimonides† , 2010 .

[577]  Vipan Kakkar,et al.  An Electret-Based Angular Electrostatic Energy Harvester for Battery-Less Cardiac and Neural Implants , 2017, IEEE Access.

[578]  T. Button,et al.  (Ba,Ca)(Zr,Ti)O3 lead-free piezoelectric ceramics—The critical role of processing on properties , 2015 .

[579]  Sutrisno Ibrahim,et al.  A review on frequency tuning methods for piezoelectric energy harvesting systems , 2012 .

[580]  Fan Zheng,et al.  Ferroelectric Domain Wall Induced Band Gap Reduction and Charge Separation in Organometal Halide Perovskites. , 2015, The journal of physical chemistry letters.

[581]  Peter Woias,et al.  Characterization of different beam shapes for piezoelectric energy harvesting , 2008 .

[582]  J. Ji,et al.  Recent development and application of thermoelectric generator and cooler , 2015 .

[583]  J. Tao,et al.  Energy harvesting from pavement via polyvinylidene fluoride: hybrid piezo-pyroelectric effects , 2016 .

[584]  D. Mitzi,et al.  Two-Dimensional Lead(II) Halide-Based Hybrid Perovskites Templated by Acene Alkylamines: Crystal Structures, Optical Properties, and Piezoelectricity. , 2017, Inorganic chemistry.

[585]  Daniel Champier,et al.  Thermoelectric generators: A review of applications , 2017 .

[586]  Su-Huai Wei,et al.  Halide perovskite materials for solar cells: a theoretical review , 2015 .

[587]  Jinhui Song,et al.  Nanowire Piezoelectric Nanogenerators on Plastic Substrates as Flexible Power Sources for Nanodevices , 2007 .

[588]  Xiaohao Wang,et al.  Review of MEMS Electromagnetic Vibration Energy Harvester , 2017, Journal of Microelectromechanical Systems.

[589]  S. Trolier-McKinstry,et al.  Ferroelectric-thermoelectricity and Mott transition of ferroelectric oxides with high electronic conductivity , 2012 .

[590]  Xiaobiao Shan,et al.  A New Mathematical Model for a Piezoelectric-Electromagnetic Hybrid Energy Harvester , 2013 .

[591]  J. G. Sevillano,et al.  Microcompression tests of single-crystalline and ultrafine grain Bi_2Te_3 thermoelectric material , 2015 .

[592]  Min Ki Kim,et al.  Triboelectric–thermoelectric hybrid nanogenerator for harvesting frictional energy , 2016 .

[593]  Dong-You Choi,et al.  Comparative Study of Antenna Designs for RF Energy Harvesting , 2013 .

[594]  J. Bos,et al.  Half-Heusler thermoelectrics: a complex class of materials , 2014, Journal of physics. Condensed matter : an Institute of Physics journal.

[595]  R. Vaish,et al.  An experimental study on thermal energy harvesting using Ca0.15(Sr0.5Ba0.5)0.85Nb2O5 pyroelectric ceramics , 2016 .

[596]  M. Alexe,et al.  Enhancement of Local Photovoltaic Current at Ferroelectric Domain Walls in BiFeO3 , 2017, Scientific Reports.

[597]  S. LeBlanc,et al.  Printed thermoelectric materials and devices: Fabrication techniques, advantages, and challenges , 2017 .

[598]  Yeong Hwan Ko,et al.  Hybrid Energy Cell with Hierarchical Nano/Micro-Architectured Polymer Film to Harvest Mechanical, Solar, and Wind Energies Individually/Simultaneously. , 2016, ACS applied materials & interfaces.

[599]  Nripan Mathews,et al.  Current progress and future perspectives for organic/inorganic perovskite solar cells , 2014 .

[600]  M. Karppinen,et al.  Flexible Thermoelectric ZnO–Organic Superlattices on Cotton Textile Substrates by ALD/MLD , 2017 .

[601]  Yu Song,et al.  Flexible fiber-based hybrid nanogenerator for biomechanical energy harvesting and physiological monitoring , 2017 .

[602]  F Costa,et al.  Piezoelectric diaphragm for vibration energy harvesting. , 2005, Ultrasonics.

[603]  E. Dallago,et al.  Analytical Model of a Vibrating Electromagnetic Harvester Considering Nonlinear Effects , 2010, IEEE Transactions on Power Electronics.

[604]  Shan X. Wang,et al.  Magnetic energy harvesting properties of piezofiber bimorph/NdFeB composites , 2014 .

[605]  Bill J. Van Heyst,et al.  A review of the state of the science on wearable thermoelectric power generators (TEGs) and their existing challenges , 2017 .

[606]  Jin-Seo Noh,et al.  Conductive Elastomers for Stretchable Electronics, Sensors and Energy Harvesters , 2016, Polymers.

[607]  Se Yeong Jeong,et al.  Design and optimization of piezoelectric impact-based micro wind energy harvester for wireless sensor network , 2015 .

[608]  Chao Wang,et al.  A thermoelectric generator for scavenging gas-heat: From module optimization to prototype test , 2017 .

[609]  A. Moure,et al.  Feasible integration in asphalt of piezoelectric cymbals for vibration energy harvesting , 2016 .

[610]  David Cahen,et al.  Hybrid organic—inorganic perovskites: low-cost semiconductors with intriguing charge-transport properties , 2016 .