Subdivisions and connectional networks of the lateral prefrontal cortex in the macaque monkey

Neuroanatomical studies have long indicated that corticocortical connections are organized in networks that relate distinct sets of areas. Such networks have been emphasized by development of functional imaging methods for correlating activity across the cortex. Previously, two networks were recognized in the orbitomedial prefrontal cortex, the “orbital” and “medial” networks (OPFC and MPFC, respectively). In this study, three additional networks are proposed for the lateral prefrontal cortex: 1) a ventrolateral network (VLPFC) in and ventral to the principal sulcus; 2) a dorsal network (DPFC) in and dorsal to the principal sulcus and in the frontal pole; 3) a caudolateral network (CLPFC) in and rostral to the arcuate sulcus and the caudal principal sulcus. The connections of the first two networks are described here. Areas in each network are connected primarily with other areas in the same network, with overlaps around the principal sulcus. The VLPFC and DPFC are also connected with the OPFC and MPFC, respectively. Outside the prefrontal cortex, the VLPFC connects with specific areas related to somatic/visceral sensation and vision, in the frontoparietal operculum, insula, ventral bank/fundus of the superior temporal sulcus, inferior temporal gyrus, and inferior parietal cortex. In contrast, the DPFC connects with the rostral superior temporal gyrus, dorsal bank of the superior temporal sulcus, parahippocampal cortex, and posterior cingulate and retrosplenial cortex. Area 45a, in caudal VLPFC, is unique, having connections with all the networks. Its extrinsic connections resemble those of the DPFC. In addition, it has connections with both auditory belt/parabelt areas, and visual related areas. J. Comp. Neurol. 522:1641–1690, 2014. © 2013 Wiley Periodicals, Inc.

[1]  D. Pandya,et al.  Dorsolateral prefrontal cortex: comparative cytoarchitectonic analysis in the human and the macaque brain and corticocortical connection patterns , 1999, The European journal of neuroscience.

[2]  C. Bruce,et al.  Primate frontal eye fields. I. Single neurons discharging before saccades. , 1985, Journal of neurophysiology.

[3]  D. Amaral,et al.  Amygdalo‐cortical projections in the monkey (Macaca fascicularis) , 1984, The Journal of comparative neurology.

[4]  Doris Y. Tsao,et al.  Faces and objects in macaque cerebral cortex , 2003, Nature Neuroscience.

[5]  P. Goldman-Rakic,et al.  Myelo‐ and cytoarchitecture of the granular frontal cortex and surrounding regions in the strepsirhine primate Galago and the anthropoid primate Macaca , 1991, The Journal of comparative neurology.

[6]  E. J. Tehovnik,et al.  Eye fields in the frontal lobes of primates , 2000, Brain Research Reviews.

[7]  L. Sternberger,et al.  Monoclonal antibodies distinguish phosphorylated and nonphosphorylated forms of neurofilaments in situ. , 1983, Proceedings of the National Academy of Sciences of the United States of America.

[8]  Ilya E. Monosov,et al.  Frontal eye field activity enhances object identification during covert visual search. , 2009, Journal of neurophysiology.

[9]  J. Price,et al.  Neuroimaging abnormalities in the subgenual prefrontal cortex: implications for the pathophysiology of familial mood disorders , 1998, Molecular Psychiatry.

[10]  A. Craig,et al.  How do you feel — now? The anterior insula and human awareness , 2009, Nature Reviews Neuroscience.

[11]  Leslie G. Ungerleider,et al.  Uncovering the visual “alphabet”: Advances in our understanding of object perception , 2011, Vision Research.

[12]  K. Kawamura,et al.  Corticocortical projections to the prefrontal cortex in the rhesus monkey investigated with horseradish peroxidase techniques , 1984, Neuroscience Research.

[13]  Bruno B Averbeck,et al.  Integration of Auditory and Visual Communication Information in the Primate Ventrolateral Prefrontal Cortex , 2006, The Journal of Neuroscience.

[14]  M. Petrides,et al.  Broca’s region: linking human brain functional connectivity data and non‐human primate tracing anatomy studies , 2010, The European journal of neuroscience.

[15]  D I Perrett,et al.  Motion sensitive cells in the macaque superior temporal polysensory area. I. Lack of response to the sight of the animal's own limb movement. , 1993, Experimental brain research.

[16]  J. Price,et al.  Sensory and premotor connections of the orbital and medial prefrontal cortex of macaque monkeys , 1995, The Journal of comparative neurology.

[17]  Jeffrey D Schall,et al.  On the role of frontal eye field in guiding attention and saccades , 2004, Vision Research.

[18]  C. Padoa-Schioppa,et al.  Neurons in the orbitofrontal cortex encode economic value , 2006, Nature.

[19]  H. Barbas,et al.  Cortical structure predicts the pattern of corticocortical connections. , 1997, Cerebral cortex.

[20]  D. Pandya,et al.  Afferent cortical connections and architectonics of the superior temporal sulcus and surrounding cortex in the rhesus monkey , 1978, Brain Research.

[21]  Tsutomu Hashikawa,et al.  Cytoarchitectonic and chemoarchitectonic subdivisions of the perirhinal and parahippocampal cortices in macaque monkeys , 2007, The Journal of comparative neurology.

[22]  T Shiwa,et al.  Corticocortical projections to the monkey temporal lobe with particular reference to the visual processing pathways. , 1987, Archives italiennes de biologie.

[23]  J. Price,et al.  Central olfactory connections in the macaque monkey , 1994, The Journal of comparative neurology.

[24]  Timothy Edward John Behrens,et al.  Anatomical and Functional Connectivity of Cytoarchitectonic Areas within the Human Parietal Operculum , 2010, The Journal of Neuroscience.

[25]  Mara Fabri,et al.  Cortical areas within the lateral sulcus connected to cutaneous representations in areas 3b and 1: A revised interpretation of the second somatosensory area in macaque monkeys , 1995, The Journal of comparative neurology.

[26]  G. Rizzolatti,et al.  Functional Organization of Inferior Parietal Lobule Convexity in the Macaque Monkey: Electrophysiological Characterization of Motor, Sensory and Mirror Responses and Their Correlation with Cytoarchitectonic Areas , 2022 .

[27]  C. Padoa-Schioppa,et al.  Contributions of Orbitofrontal and Lateral Prefrontal Cortices to Economic Choice and the Good-to-Action Transformation , 2014, Neuron.

[28]  L Krubitzer,et al.  A redefinition of somatosensory areas in the lateral sulcus of macaque monkeys , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[29]  K. Saleem,et al.  Complementary circuits connecting the orbital and medial prefrontal networks with the temporal, insular, and opercular cortex in the macaque monkey , 2008, The Journal of comparative neurology.

[30]  J. Price,et al.  Architectonic subdivision of the orbital and medial prefrontal cortex in the macaque monkey , 1994, The Journal of comparative neurology.

[31]  S. Petersen,et al.  Role of the anterior insula in task-level control and focal attention , 2010, Brain Structure and Function.

[32]  Dwight J. Kravitz,et al.  A new neural framework for visuospatial processing , 2011, Nature Reviews Neuroscience.

[33]  U. Jürgens,et al.  The neural control of vocalization in mammals: a review. , 2009, Journal of voice : official journal of the Voice Foundation.

[34]  R. Bandler,et al.  Parallel circuits mediating distinct emotional coping reactions to different types of stress , 2001, Neuroscience & Biobehavioral Reviews.

[35]  G. Luppino,et al.  Connectional heterogeneity of the ventral part of the macaque area 46. , 2013, Cerebral cortex.

[36]  K. Saleem,et al.  Differential connections of the perirhinal and parahippocampal cortex with the orbital and medial prefrontal networks in macaque monkeys , 2005, The Journal of comparative neurology.

[37]  Robert Desimone,et al.  Feature-Based Attention in the Frontal Eye Field and Area V4 during Visual Search , 2011, Neuron.

[38]  P. Goldman-Rakic,et al.  Posterior parietal cortex in rhesus monkey: II. Evidence for segregated corticocortical networks linking sensory and limbic areas with the frontal lobe , 1989, The Journal of comparative neurology.

[39]  R Bandler,et al.  Orbitomedial prefrontal cortical projections to hypothalamus in the rat , 2001, The Journal of comparative neurology.

[40]  C. Saper,et al.  The Need to Feed Homeostatic and Hedonic Control of Eating , 2002, Neuron.

[41]  H Burton,et al.  Somatotopographic organization in the second somatosensory area of M. fascicularis , 1980, The Journal of comparative neurology.

[42]  Yukiko Kikuchi,et al.  Hierarchical Auditory Processing Directed Rostrally along the Monkey's Supratemporal Plane , 2010, The Journal of Neuroscience.

[43]  D. Perrett,et al.  Integration of form and motion in the anterior superior temporal polysensory area (STPa) of the macaque monkey. , 1996, Journal of neurophysiology.

[44]  M. Rushworth,et al.  Distinct Roles of Three Frontal Cortical Areas in Reward-Guided Behavior , 2011, The Journal of Neuroscience.

[45]  J. Hollerman,et al.  Reward processing in primate orbitofrontal cortex and basal ganglia. , 2000, Cerebral cortex.

[46]  D. Pandya,et al.  Efferent Association Pathways from the Rostral Prefrontal Cortex in the Macaque Monkey , 2007, The Journal of Neuroscience.

[47]  L. Romanski Integration of faces and vocalizations in ventral prefrontal cortex: Implications for the evolution of audiovisual speech , 2012, Proceedings of the National Academy of Sciences.

[48]  J. Kaas,et al.  Subdivisions of auditory cortex and ipsilateral cortical connections of the parabelt auditory cortex in macaque monkeys , 1998, The Journal of comparative neurology.

[49]  D. Pandya,et al.  The cortical connectivity of the prefrontal cortex in the monkey brain , 2012, Cortex.

[50]  M. Mishkin,et al.  OCCIPITOTEMPORAL CORTICOCORTICAL CONNECTIONS IN THE RHESUS MONKEY. , 1965, Experimental neurology.

[51]  Doris Y. Tsao,et al.  Comparing face patch systems in macaques and humans , 2008, Proceedings of the National Academy of Sciences.

[52]  Megan M. Filkowski,et al.  Subcallosal cingulate deep brain stimulation for treatment-resistant unipolar and bipolar depression. , 2012, Archives of general psychiatry.

[53]  J. Price,et al.  Midline and intralaminar thalamic connections with the orbital and medial prefrontal networks in macaque monkeys , 2007, The Journal of comparative neurology.

[54]  P. Goldman-Rakic,et al.  Areal segregation of face-processing neurons in prefrontal cortex. , 1997, Science.

[55]  A. Walker,et al.  A cytoarchitectural study of the prefrontal area of the macaque monkey , 1940 .

[56]  E. Miller,et al.  Neuronal activity in primate dorsolateral and orbital prefrontal cortex during performance of a reward preference task , 2003, The European journal of neuroscience.

[57]  M. Mishkin,et al.  Dual streams of auditory afferents target multiple domains in the primate prefrontal cortex , 1999, Nature Neuroscience.

[58]  J. Morrison,et al.  Neurofilament protein defines regional patterns of cortical organization in the macaque monkey visual system: A quantitative immunohistochemical analysis , 1995, The Journal of comparative neurology.

[59]  Leslie G. Ungerleider,et al.  Projections from inferior temporal cortex to prefrontal cortex via the uncinate fascicle in rhesus monkeys , 2004, Experimental Brain Research.

[60]  R. Passingham,et al.  Specialisation within the prefrontal cortex: the ventral prefrontal cortex and associative learning , 2000, Experimental Brain Research.

[61]  Alvaro Pascual-Leone,et al.  Identification of reproducible individualized targets for treatment of depression with TMS based on intrinsic connectivity , 2013, NeuroImage.

[62]  M. Raichle,et al.  Subgenual prefrontal cortex abnormalities in mood disorders , 1997, Nature.

[63]  Abraham Z. Snyder,et al.  A default mode of brain function: A brief history of an evolving idea , 2007, NeuroImage.

[64]  T. R. Scott Taste as a basis for body wisdom , 2011, Physiology & Behavior.

[65]  G. Luppino,et al.  Multimodal architectonic subdivision of the caudal ventrolateral prefrontal cortex of the macaque monkey , 2007, Brain Structure and Function.

[66]  W. Cowan,et al.  A stereotaxic atlas of the brain of the cynomolgus monkey (Macaca fascicularis) , 1984, The Journal of comparative neurology.

[67]  D. V. van Essen,et al.  The Processing of Visual Shape in the Cerebral Cortex of Human and Nonhuman Primates: A Functional Magnetic Resonance Imaging Study , 2004, The Journal of Neuroscience.

[68]  J. Price,et al.  Prefrontal cortical projections to the hypothalamus in Macaque monkeys , 1998, The Journal of comparative neurology.

[69]  G. Luppino,et al.  Cortical connections of the macaque caudal ventrolateral prefrontal areas 45A and 45B. , 2010, Cerebral cortex.

[70]  K. Hikosaka,et al.  Delay activity of orbital and lateral prefrontal neurons of the monkey varying with different rewards. , 2000, Cerebral cortex.

[71]  Jon H Kaas,et al.  The organization of somatosensory cortex in anthropoid primates. , 2003, Advances in neurology.

[72]  Doris Y. Tsao,et al.  Patches of face-selective cortex in the macaque frontal lobe , 2008, Nature Neuroscience.

[73]  Hideki Kondo,et al.  Differential connections of the temporal pole with the orbital and medial prefrontal networks in macaque monkeys , 2003, The Journal of comparative neurology.

[74]  E. G. Jones,et al.  Differential Calcium Binding Protein Immunoreactivity Distinguishes Classes of Relay Neurons in Monkey Thalamic Nuclei , 1989, The European journal of neuroscience.

[75]  A. Murata,et al.  Cortical connections of the macaque anterior intraparietal (AIP) area. , 2008, Cerebral cortex.

[76]  H. Barbas Anatomic organization of basoventral and mediodorsal visual recipient prefrontal regions in the rhesus monkey , 1988, The Journal of comparative neurology.

[77]  John W. Lane,et al.  Receptive Field Properties of the Macaque Second Somatosensory Cortex: Evidence for Multiple Functional Representations , 2004, The Journal of Neuroscience.

[78]  E. Murray,et al.  Dissociable Effects of Subtotal Lesions within the Macaque Orbital Prefrontal Cortex on Reward-Guided Behavior , 2011, The Journal of Neuroscience.

[79]  Aldo Genovesio,et al.  Evaluating self-generated decisions in frontal pole cortex of monkeys , 2009, Nature Neuroscience.

[80]  M. Mesulam,et al.  Cortical afferent input to the principals region of the rhesus monkey , 1985, Neuroscience.

[81]  D. Pandya,et al.  Comparative cytoarchitectonic analysis of the human and the macaque ventrolateral prefrontal cortex and corticocortical connection patterns in the monkey , 2002, The European journal of neuroscience.

[82]  D. Pandya,et al.  Cortico-cortical connections in the rhesus monkey. , 1969, Brain research.

[83]  L. Sternberger,et al.  Varying degrees of phosphorylation determine microheterogeneity of the heavy neurofilament polypeptide (Nf-H) , 1987, Journal of Neuroimmunology.

[84]  C. Saper,et al.  Evidence for a viscerotopic sensory representation in the cortex and thalamus in the rat , 1987, The Journal of comparative neurology.

[85]  G. Shulman,et al.  Medial prefrontal cortex and self-referential mental activity: Relation to a default mode of brain function , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[86]  M. Arbib,et al.  Grasping objects: the cortical mechanisms of visuomotor transformation , 1995, Trends in Neurosciences.

[87]  M. Petrides,et al.  Ventrolateral prefrontal neuronal activity related to active controlled memory retrieval in nonhuman primates. , 2007, Cerebral cortex.

[88]  A. Lozano,et al.  Deep Brain Stimulation for Treatment-Resistant Depression , 2005, Neuron.

[89]  E. Rolls,et al.  Functional subdivisions of the temporal lobe neocortex , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[90]  M. Petrides Lateral prefrontal cortex: architectonic and functional organization , 2005, Philosophical Transactions of the Royal Society B: Biological Sciences.

[91]  H. Sakata,et al.  Selectivity for the shape, size, and orientation of objects for grasping in neurons of monkey parietal area AIP. , 2000, Journal of neurophysiology.

[92]  P. Goldman-Rakic,et al.  Segregation of working memory functions within the dorsolateral prefrontal cortex , 2000, Experimental Brain Research.

[93]  A. Craig Significance of the insula for the evolution of human awareness of feelings from the body. , 2011, Annals of the New York Academy of Sciences.

[94]  M. Petrides,et al.  Efferent association pathways originating in the caudal prefrontal cortex in the macaque monkey , 2006, The Journal of comparative neurology.

[95]  J. Price,et al.  Architectonic subdivision of the human orbital and medial prefrontal cortex , 2003, The Journal of comparative neurology.

[96]  E. Rolls The orbitofrontal cortex and reward. , 2000, Cerebral cortex.

[97]  D. Pandya,et al.  Frontal lobe connections of the superior temporal sulcus in the rhesus monkey , 1989, The Journal of comparative neurology.

[98]  R. Passingham,et al.  The Neurobiology of the Prefrontal Cortex: Anatomy, Evolution, and the Origin of Insight , 2012 .

[99]  Mortimer Mishkin,et al.  Exploring the extent and function of higher-order auditory cortex in rhesus monkeys , 2007, Hearing Research.

[100]  G L Shulman,et al.  INAUGURAL ARTICLE by a Recently Elected Academy Member:A default mode of brain function , 2001 .

[101]  H. Barbas,et al.  The laminar pattern of connections between prefrontal and anterior temporal cortices in the Rhesus monkey is related to cortical structure and function. , 2000, Cerebral cortex.

[102]  M. Mishkin,et al.  Non-spatial memory after selective prefrontal lesions in monkeys , 1978, Brain Research.

[103]  T. Powell,et al.  An anatomical study of converging sensory pathways within the cerebral cortex of the monkey. , 1970, Brain : a journal of neurology.

[104]  R. Desimone,et al.  Visual properties of neurons in a polysensory area in superior temporal sulcus of the macaque. , 1981, Journal of neurophysiology.

[105]  G. Orban,et al.  Comparative mapping of higher visual areas in monkeys and humans , 2004, Trends in Cognitive Sciences.

[106]  Nikolaus R. McFarland,et al.  Striatonigrostriatal Pathways in Primates Form an Ascending Spiral from the Shell to the Dorsolateral Striatum , 2000, The Journal of Neuroscience.

[107]  G. Luppino,et al.  Cortical connections of the inferior parietal cortical convexity of the macaque monkey. , 2006, Cerebral cortex.

[108]  M. Mintun,et al.  The default mode network and self-referential processes in depression , 2009, Proceedings of the National Academy of Sciences.

[109]  Keiji Tanaka,et al.  Inferotemporal cortex and object vision. , 1996, Annual review of neuroscience.

[110]  J. Morrison,et al.  Monoclonal antibody to neurofilament protein (SMI‐32) labels a subpopulation of pyramidal neurons in the human and monkey neocortex , 1989, The Journal of comparative neurology.

[111]  L. Parsons,et al.  Reciprocal limbic-cortical function and negative mood: converging PET findings in depression and normal sadness. , 1999, The American journal of psychiatry.

[112]  R Bandler,et al.  Orbitomedial prefrontal cortical projections to distinct longitudinal columns of the periaqueductal gray in the rat , 2000, The Journal of comparative neurology.

[113]  M. Petrides,et al.  Differential activation of the human orbital, mid-ventrolateral, and mid-dorsolateral prefrontal cortex during the processing of visual stimuli , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[114]  Doris Y. Tsao,et al.  Fine-Scale Spatial Organization of Face and Object Selectivity in the Temporal Lobe: Do Functional Magnetic Resonance Imaging, Optical Imaging, and Electrophysiology Agree? , 2008, The Journal of Neuroscience.

[115]  J. Price,et al.  The organization of networks within the orbital and medial prefrontal cortex of rats, monkeys and humans. , 2000, Cerebral cortex.

[116]  D J Felleman,et al.  Somatotopic organization of the lateral sulcus of owl monkeys: Area 3b, s‐II, and a ventral somatosensory area , 1989, The Journal of comparative neurology.

[117]  Harold Burton,et al.  Multiple parietal operculum subdivisions in humans: Tactile activation maps , 2008, Somatosensory & motor research.

[118]  Margaret E. Sereno,et al.  Shape selectivity in primate frontal eye field. , 2008, Journal of neurophysiology.

[119]  Keiji Tanaka,et al.  Connections between Anterior Inferotemporal Cortex and Superior Temporal Sulcus Regions in the Macaque Monkey , 2000, The Journal of Neuroscience.

[120]  P. Goldman-Rakic,et al.  Auditory belt and parabelt projections to the prefrontal cortex in the Rhesus monkey , 1999, The Journal of comparative neurology.

[121]  Matthew F S Rushworth,et al.  Attentional Selection and Action Selection in the Ventral and Orbital Prefrontal Cortex , 2005, The Journal of Neuroscience.

[122]  G. Orban,et al.  Selectivity for 3D shape that reveals distinct areas within macaque inferior temporal cortex. , 2000, Science.

[123]  Jonathan D. Power,et al.  Control-related systems in the human brain , 2013, Current Opinion in Neurobiology.

[124]  J. Price,et al.  Prefrontal cortical projections to the striatum in macaque monkeys: Evidence for an organization related to prefrontal networks , 2000, The Journal of comparative neurology.

[125]  Leslie G. Ungerleider,et al.  Connections of inferior temporal areas TEO and TE with parietal and frontal cortex in macaque monkeys. , 1994, Cerebral cortex.

[126]  J. Kaas,et al.  Subdivisions of auditory cortex and processing streams in primates. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[127]  T. Stanford,et al.  Stimulus Selectivity in Dorsal and Ventral Prefrontal Cortex after Training in Working Memory Tasks , 2011, The Journal of Neuroscience.

[128]  Michael Petrides,et al.  Anatomical organization of the eye fields in the human and non-human primate frontal cortex , 2009, Progress in Neurobiology.

[129]  E. Miller,et al.  Neural Activity in the Primate Prefrontal Cortex during Associative Learning , 1998, Neuron.

[130]  T. Preuss Do Rats Have Prefrontal Cortex? The Rose-Woolsey-Akert Program Reconsidered , 1995, Journal of Cognitive Neuroscience.

[131]  J. Price,et al.  Neural circuits underlying the pathophysiology of mood disorders , 2012, Trends in Cognitive Sciences.

[132]  J. K. Hietanen,et al.  Directional tuning of motion-sensitive cells in the anterior superior temporal polysensory area of the macaque , 2004, Experimental Brain Research.

[133]  E. Miller,et al.  THE PREFRONTAL CORTEX AND COGNITIVE CONTROL , 2000 .

[134]  N. Logothetis,et al.  A combined MRI and histology atlas of the rhesus monkey brain in stereotaxic coordinates , 2007 .

[135]  H. Barbas,et al.  Organization of afferent input to subdivisions of area 8 in the rhesus monkey , 1981, The Journal of comparative neurology.

[136]  E. Miller,et al.  The prefontral cortex and cognitive control , 2000, Nature Reviews Neuroscience.

[137]  Deepak N. Pandya,et al.  The prefrontal cortex: Comparative architectonic organization in the human and the macaque monkey brains , 2012, Cortex.

[138]  Paul D. Gamlin,et al.  An area for vergence eye movement in primate frontal cortex , 2000, Nature.

[139]  C. Bruce,et al.  Primate frontal eye fields. II. Physiological and anatomical correlates of electrically evoked eye movements. , 1985, Journal of neurophysiology.

[140]  Timothy O. Laumann,et al.  Functional Network Organization of the Human Brain , 2011, Neuron.

[141]  J. Price,et al.  Neurocircuitry of Mood Disorders , 2010, Neuropsychopharmacology.

[142]  G. Luppino,et al.  Anatomical Evidence for the Involvement of the Macaque Ventrolateral Prefrontal Area 12r in Controlling Goal-Directed Actions , 2011, The Journal of Neuroscience.

[143]  L. Krubitzer,et al.  Somatotopic organization of cortical fields in the lateral sulcus of Homo sapiens: Evidence for SII and PV , 2000, The Journal of comparative neurology.

[144]  T. Preuss Taking the Measure of Diversity: Comparative Alternatives to the Model-Animal Paradigm in Cortical Neuroscience , 2000, Brain, Behavior and Evolution.

[145]  P. Goldman-Rakic,et al.  Dissociation of object and spatial processing domains in primate prefrontal cortex. , 1993, Science.

[146]  Debra A. Gusnard,et al.  Being a self: Considerations from functional imaging , 2005, Consciousness and Cognition.

[147]  J. Price,et al.  Prefrontal cortical projections to longitudinal columns in the midbrain periaqueductal gray in Macaque monkeys , 1998, The Journal of comparative neurology.

[148]  H. Sakata,et al.  Neural mechanisms of visual guidance of hand action in the parietal cortex of the monkey. , 1995, Cerebral cortex.

[149]  Dwight J. Kravitz,et al.  The ventral visual pathway: an expanded neural framework for the processing of object quality , 2013, Trends in Cognitive Sciences.

[150]  Jonathan D. Wallis,et al.  Neurons in the Frontal Lobe Encode the Value of Multiple Decision Variables , 2009, Journal of Cognitive Neuroscience.

[151]  N. Kanwisher,et al.  New method for fMRI investigations of language: defining ROIs functionally in individual subjects. , 2010, Journal of neurophysiology.

[152]  E. Murray,et al.  Balkanizing the primate orbitofrontal cortex: distinct subregions for comparing and contrasting values , 2011, Annals of the New York Academy of Sciences.

[153]  Deepak N. Pandya,et al.  Further observations on corticofrontal connections in the rhesus monkey , 1976, Brain Research.

[154]  D. Pandya,et al.  Architecture and intrinsic connections of the prefrontal cortex in the rhesus monkey , 1989, The Journal of comparative neurology.