Piecewise polynomials, Minkowski weights, and localization on toric varieties

We use localization to describe the restriction map from equivariant Chow cohomology to ordinary Chow cohomology for complete toric varieties in terms of piecewise polynomial functions and Minkowski weights. We compute examples showing that this map is not surjective in general, and that its kernel is not always generated in degree one. We prove a localization formula for mixed volumes of lattice polytopes and, more generally, a Bott residue formula for toric vector bundles.

[1]  Michel Brion,et al.  Equivariant Chow groups for torus actions , 1997 .

[2]  Sam Payne Ehrhart Series and Lattice Triangulations , 2008, Discret. Comput. Geom..

[3]  EQUIVARIANT CHOW COHOMOLOGY OF TORIC VARIETIES , 2005, math/0506376.

[4]  Toric vector bundles, branched covers of fans, and the resolution property , 2006, math/0605537.

[5]  A. Meyers Reading , 1999, Language Teaching.

[6]  W. Graham,et al.  Localization in equivariant intersection theory and the Bott residue formula , 1995, alg-geom/9508001.

[7]  J. Brasselet Introduction to toric varieties , 2004 .

[8]  M. Brion,et al.  Groupe de Picard et nombres caracteristiques des varietes spheriques , 1989 .

[9]  Michael Francis Atiyah,et al.  Introduction to commutative algebra , 1969 .

[10]  Kimura Shun-ichi Fractional intersection and bivariant theory , 1992 .

[11]  Alexander Barvinok,et al.  A course in convexity , 2002, Graduate studies in mathematics.

[12]  Grigory Mikhalkin Tropical geometry and its applications , 2006 .

[13]  W. Rossmann EQUIVARIANT MULTIPLICITIES ON COMPLEX VARIETIES , 1989 .

[14]  W. Graham,et al.  Equivariant intersection theory , 1996, alg-geom/9609018.

[15]  B. Sturmfels,et al.  Combinatorial Commutative Algebra , 2004 .

[16]  M. Brion Piecewise polynomial functions, convex polytopes and enumerative geometry , 1996 .

[17]  Eric Katz A Tropical Toolkit , 2006 .

[18]  Jim Lawrence,et al.  Valuations and polarity , 1988, Discret. Comput. Geom..

[19]  Bernd Sturmfels,et al.  Intersection theory on toric varieties , 1994 .

[20]  Peter McMullen,et al.  Lattice invariant valuations on rational polytopes , 1978 .

[21]  K. Brown,et al.  Graduate Texts in Mathematics , 1982 .

[22]  Ezra Miller,et al.  Gröbner geometry of Schubert polynomials , 2001 .

[23]  William Graham,et al.  Equivariant intersection theory (With an Appendix by Angelo Vistoli: The Chow ring of M2) , 1998 .

[24]  William Fulton,et al.  Introduction to Toric Varieties. (AM-131) , 1993 .

[25]  Pierre Samuel,et al.  Méthodes d'algèbre abstraite en géométrie algèbrique , 1956 .