The hMSSM approach for Higgs self-couplings revisited

We compare the decay of the heavy Higgs boson into two SM-like Higgs bosons, $$H\rightarrow hh$$H→hh, calculated in a Feynman-diagrammatic approach at the one-loop level based on the one hand on the full effective potential involving the top quark and stops in the Minimal Supersymmetric Standard Model (MSSM) accompanied by the matched Two-Higgs-Doublet Model (2HDM) as its low-energy limit and on the other hand on the hMSSM approximation. We identify missing contributions due to the top quark in the Higgs self-couplings of the hMSSM, that – when taken into account – lead to a good agreement between the hMSSM and a full MSSM calculation, at least in the limit of the Higgsino mass parameter $$\mu $$μ being small compared to the stop spectrum. We also thoroughly analyze momentum-dependent and kinetic corrections intrinsic to the Feynman-diagrammatic approach and the matching to the effective Lagrangian, respectively, for both our calculation in the MSSM and the hMSSM and for the latter suggest to include additional corrections from the top quark, which are independent of the unknown supersymmetric spectrum.

[1]  H. Nilles,et al.  Supersymmetry, Supergravity and Particle Physics , 1984 .

[2]  D. Volkov,et al.  Is the Neutrino a Goldstone Particle , 1973 .

[3]  R. Jackiw Functional evaluation of the effective potential , 1974 .

[4]  J. Bell,et al.  A PCAC puzzle: π0→γγ in the σ-model , 1969 .

[5]  J. Ellis,et al.  On radiative corrections to supersymmetric Higgs boson masses and their implications for LEP searches , 1991 .

[6]  A. Brignole,et al.  Radiative corrections to the decay H → hh in the minimal supersymmetric standard model , 1993 .

[7]  J. Gunion,et al.  The Higgs Hunter's Guide , 1990 .

[8]  Nikolaos Rompotis,et al.  Benchmark scenarios for low tanβ in the MSSM , 2015 .

[9]  M. Carena,et al.  Analytical expressions for radiatively corrected Higgs masses and couplings in the MSSM , 1995 .

[10]  A. Djouadi,et al.  Fully covering the MSSM Higgs sector at the LHC , 2015, 1502.05653.

[11]  Erick J. Weinberg,et al.  Radiative Corrections as the Origin of Spontaneous Symmetry Breaking , 1973 .

[12]  M. Veltman,et al.  One-loop corrections for e + e - annihilation into μ + μ - in the Weinberg model , 1979 .

[13]  P. Alam ‘S’ , 2021, Composites Engineering: An A–Z Guide.

[14]  A. Djouadi The Anatomy of electro-weak symmetry breaking. I: The Higgs boson in the standard model , 2005, hep-ph/0503172.

[15]  J. Quevillon,et al.  The neutral Higgs self-couplings in the (h)MSSM , 2017, 1709.02332.

[16]  Ryszard S. Romaniuk,et al.  Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC , 2012 .

[17]  Giovanni Ridolfi,et al.  Radiative corrections to the masses of supersymmetric Higgs bosons , 1991 .

[18]  Gabriel Lee,et al.  Higgs bosons in heavy supersymmetry with an intermediate m A , 2015, 1508.00576.

[19]  H. Haber,et al.  Can the mass of the lightest Higgs boson of the minimal supersymmetric model be larger than mZ? , 1991, Physical review letters.

[20]  Y. Golfand,et al.  EXTENSION OF THE ALGEBRA OF POINCARE GROUP GENERATORS AND VIOLATION OF P INVARIANCE. , 1971 .

[21]  A. Djouadi The anatomy of electroweak symmetry breaking Tome II: The Higgs bosons in the Minimal Supersymmetric Model , 2005, hep-ph/0503173.

[22]  A. Dabelstein The one-loop renormalization of the MSSM Higgs sector and its application to the neutral scalar Higgs masses , 1994, hep-ph/9409375.

[23]  J. Gunion,et al.  Higgs bosons in supersymmetric models (II). Implications for phenomenology , 1986 .

[24]  Konstantin T. Matchev,et al.  Precision corrections in the minimal supersymmetric standard model , 1996, hep-ph/9606211.

[25]  Abdelhak Djouadi,et al.  The MSSM Higgs sector at a high MSUSY: reopening the low tan β regime and heavy Higgs searches , 2013, 1304.1787.

[26]  Hall,et al.  Top quark mass in supersymmetric SO(10) unification. , 1993, Physical review. D, Particles and fields.

[27]  Antonio Dobado,et al.  Self-interactions of the lightest minimal supersymmetric standard model Higgs boson in the large pseudoscalar-mass limit , 2002 .

[28]  M. Beneke,et al.  Higgs couplings in the MSSM at large tan β , 2008, Journal of High Energy Physics.

[29]  S. Adler Axial vector vertex in spinor electrodynamics , 1969 .

[30]  M. Spira,et al.  Minimal supersymmetric Higgs boson self-couplings: Two-loop O ( α t α s ) corrections , 2014 .

[31]  A. Brignole,et al.  Radiative corrections to the decay H → hh in the minimal supersymmetric standard model , 1992 .

[32]  P. Alam ‘G’ , 2021, Composites Engineering: An A–Z Guide.

[33]  J. T. Childers,et al.  Combined Measurement of the Higgs Boson Mass in $pp$ Collisions at $\sqrt{s}=7$ and 8 TeV with the ATLAS and CMS Experiments , 2015, 1503.07589.

[34]  The Cms Collaboration Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC , 2012, 1207.7235.

[35]  A. Djouadi,et al.  The post-Higgs MSSM scenario: habemus MSSM? , 2013, The European physical journal. C, Particles and fields.

[36]  Howard E. Haber,et al.  Higgs bosons in supersymmetric models, 1 , 1986 .

[37]  J. Bell,et al.  A PCAC puzzle: pi0-->gammagamma in the sigma-model , 1969 .

[38]  Pierre Fayet,et al.  Supergauge invariant extension of the Higgs mechanism and a model for the electron and its neutrino , 1975 .

[39]  A. Djouadi,et al.  The MSSM Higgs sector at a high $M_{SUSY}$: reopening the low tan$\beta$ regime and the search for heavy Higgsses , 2013 .

[40]  B. Ydri Introducing supersymmetry , 2019, A Modern Course in Quantum Field Theory Volume 2 Advanced topics.

[41]  Yasuhiro Okada,et al.  Upper bound of the lightest Higgs boson mass in the minimal supersymmetric standard model , 1991 .

[42]  Berger,et al.  Supersymmetric-Higgs-boson hadroproduction and decays including radiative corrections. , 1992, Physical review. D, Particles and fields.

[43]  G. Weiglein,et al.  Precise predictions for h_a --> h_b h_c decays in the complex MSSM , 2007, 0710.5320.

[44]  B. Zumino,et al.  Supergauge Transformations in Four-Dimensions , 1974 .

[45]  P. Fayet Spontaneously Broken Supersymmetric Theories of Weak, Electromagnetic and Strong Interactions , 1977 .

[46]  T. Appelquist,et al.  Infrared Singularities and Massive Fields , 1975 .

[47]  A. Polosa,et al.  Bounds to the Higgs sector masses in minimal supersymmetry from LHC data , 2013, 1305.2172.

[48]  Gerard 't Hooft,et al.  Scalar One Loop Integrals , 1979 .

[49]  Howard E. Haber,et al.  The Search for Supersymmetry: Probing Physics Beyond the Standard Model , 1985 .

[50]  A. Brignole Radiative corrections to the supersymmetric neutral Higgs boson masses , 1992 .

[51]  M. Spira,et al.  MSSM Higgs Self-Couplings: Two-Loop O(alpha_t alpha_s) Corrections , 2013, 1309.3140.

[52]  J. Rosiek,et al.  Complete on-shell renormalization scheme for the minimal supersymmetric Higgs sector , 1993 .

[53]  R. Stuart Probing Physics Beyond the Standard Model at a High Energy e + e - Collider , 1989 .

[54]  H. Haber,et al.  Approximating the radiatively corrected Higgs mass in the minimal supersymmetric model , 1996, hep-ph/9609331.