Inference on the equality means of several two-parameter exponential distributions under progressively Type II censoring
暂无分享,去创建一个
[1] W. G. Cochran. Problems arising in the analysis of a series of similar experiments , 1937 .
[2] J. F. Lawless,et al. Analysis of data from life-test experiments under an exponential model , 1980 .
[3] B. L. Welch. ON THE COMPARISON OF SEVERAL MEAN VALUES: AN ALTERNATIVE APPROACH , 1951 .
[4] Anju Goyal,et al. Simultaneous testing for the successive differences of exponential location parameters under heteroscedasticity , 2011 .
[5] A. Jafari. Inferences on the Coefficients of Variation in a Multivariate Normal Population , 2015 .
[6] Xinmin Li. A generalized p-value approach for comparing the means of several log-normal populations , 2009 .
[8] Madan L. Puri,et al. Adaptive Nonparametric Procedures and Applications , 1988 .
[9] Juan Wang,et al. Comparison of several means: A fiducial based approach , 2011, Comput. Stat. Data Anal..
[11] Robert H. Crouse,et al. A note on the common location parameter of several exponential populations , 1998 .
[12] Shu-Fei Wu. Interval estimation for the two-parameter exponential distribution under progressive censoring , 2008 .
[13] Narayanaswamy Balakrishnan,et al. The Art of Progressive Censoring , 2014 .
[14] A. Baklizi. Shrinkage Estimation of the Common Location Parameter of Several Exponentials , 2004 .
[15] Jong-Wuu Wu,et al. Implementing lifetime performance index of products with two-parameter exponential distribution , 2011, Int. J. Syst. Sci..
[16] Shu-Fei Wu,et al. Two stage multiple comparisons with the average for exponential location parameters under heteroscedasticity , 2005 .
[17] Narayanaswamy Balakrishnan,et al. Interval Estimation of Parameters of Life From Progressively Censored Data , 1994 .
[18] S. M. Sadooghi-Alvandi,et al. A Parametric Bootstrap Approach for One-Way ANCOVA with Unequal Variances , 2013 .
[19] M. Zelen,et al. Application of Exponential Models to Problems in Cancer Research , 1966 .
[20] Mohammad Sadooghi-Alvandi,et al. Simultaneous fiducial generalized confidence intervals for the successive differences of exponential location parameters under heteroscedasticity , 2013 .
[23] Mohammad Reza Kazemi,et al. A parametric bootstrap approach for the equality of coefficients of variation , 2013, Comput. Stat..
[24] A. P. Dawid,et al. The Functional-Model Basis of Fiducial Inference , 1982 .
[25] Vishal Maurya,et al. Multiple Comparisons with More than One Control for Exponential Location Parameters Under Heteroscedasticity , 2011, Commun. Stat. Simul. Comput..
[26] Jing Xu,et al. A fiducial p-value approach for comparing heteroscedastic regression models , 2018, Commun. Stat. Simul. Comput..
[27] K. Krishnamoorthy,et al. Confidence intervals for a two-parameter exponential distribution: One- and two-sample problems , 2018 .
[28] Kam-Wah Tsui,et al. Generalized p-Values in Significance Testing of Hypotheses in the Presence of Nuisance Parameters , 1989 .
[29] S. M. Sadooghi-Alvandi,et al. Comparing exponential location parameters with several controls under heteroscedasticity , 2014, Comput. Stat..
[30] K. Krishnamoorthy,et al. A parametric bootstrap approach for ANOVA with unequal variances: Fixed and random models , 2007, Comput. Stat. Data Anal..
[31] G. S. James. THE COMPARISON OF SEVERAL GROUPS OF OBSERVATIONS WHEN THE RATIOS OF THE POPULATION VARIANCES ARE UNKNOWN , 1951 .
[32] H. K. Hsieh. An exact test for comparing location parameters of K exponential distributions with unequal scales based on type II censored data , 1986 .
[33] S. M. Sadooghi-Alvandi,et al. One-way ANOVA with Unequal Variances , 2012 .