Inference on the equality means of several two-parameter exponential distributions under progressively Type II censoring

Abstract Two-parameter exponential distribution is one of the most widely used statistical distributions in medical sciences. However, it is difficult inference about the mean of the distribution, since it is a linear combination of both scale and location parameters. For comparing the means of several two-parameter exponential distributions, there is not provided an approach in literature. In this paper, we propose four methods for this problem under progressively Type II censoring: an approximate test, a parametric bootstrap, a generalized p-value and a fiducial approach. To compare the actual sizes and powers of these tests, a simulation study is performed. At the end, two real examples are presented to illustrate them.

[1]  W. G. Cochran Problems arising in the analysis of a series of similar experiments , 1937 .

[2]  J. F. Lawless,et al.  Analysis of data from life-test experiments under an exponential model , 1980 .

[3]  B. L. Welch ON THE COMPARISON OF SEVERAL MEAN VALUES: AN ALTERNATIVE APPROACH , 1951 .

[4]  Anju Goyal,et al.  Simultaneous testing for the successive differences of exponential location parameters under heteroscedasticity , 2011 .

[5]  A. Jafari Inferences on the Coefficients of Variation in a Multivariate Normal Population , 2015 .

[6]  Xinmin Li A generalized p-value approach for comparing the means of several log-normal populations , 2009 .

[8]  Madan L. Puri,et al.  Adaptive Nonparametric Procedures and Applications , 1988 .

[9]  Juan Wang,et al.  Comparison of several means: A fiducial based approach , 2011, Comput. Stat. Data Anal..

[11]  Robert H. Crouse,et al.  A note on the common location parameter of several exponential populations , 1998 .

[12]  Shu-Fei Wu Interval estimation for the two-parameter exponential distribution under progressive censoring , 2008 .

[13]  Narayanaswamy Balakrishnan,et al.  The Art of Progressive Censoring , 2014 .

[14]  A. Baklizi Shrinkage Estimation of the Common Location Parameter of Several Exponentials , 2004 .

[15]  Jong-Wuu Wu,et al.  Implementing lifetime performance index of products with two-parameter exponential distribution , 2011, Int. J. Syst. Sci..

[16]  Shu-Fei Wu,et al.  Two stage multiple comparisons with the average for exponential location parameters under heteroscedasticity , 2005 .

[17]  Narayanaswamy Balakrishnan,et al.  Interval Estimation of Parameters of Life From Progressively Censored Data , 1994 .

[18]  S. M. Sadooghi-Alvandi,et al.  A Parametric Bootstrap Approach for One-Way ANCOVA with Unequal Variances , 2013 .

[19]  M. Zelen,et al.  Application of Exponential Models to Problems in Cancer Research , 1966 .

[20]  Mohammad Sadooghi-Alvandi,et al.  Simultaneous fiducial generalized confidence intervals for the successive differences of exponential location parameters under heteroscedasticity , 2013 .

[21]  Exact Inference for the pth-Quantile and the Reliability of the Two-Parameter Exponential Distribution with Singly Type II Censoring: A Standard Approach , 2010 .

[23]  Mohammad Reza Kazemi,et al.  A parametric bootstrap approach for the equality of coefficients of variation , 2013, Comput. Stat..

[24]  A. P. Dawid,et al.  The Functional-Model Basis of Fiducial Inference , 1982 .

[25]  Vishal Maurya,et al.  Multiple Comparisons with More than One Control for Exponential Location Parameters Under Heteroscedasticity , 2011, Commun. Stat. Simul. Comput..

[26]  Jing Xu,et al.  A fiducial p-value approach for comparing heteroscedastic regression models , 2018, Commun. Stat. Simul. Comput..

[27]  K. Krishnamoorthy,et al.  Confidence intervals for a two-parameter exponential distribution: One- and two-sample problems , 2018 .

[28]  Kam-Wah Tsui,et al.  Generalized p-Values in Significance Testing of Hypotheses in the Presence of Nuisance Parameters , 1989 .

[29]  S. M. Sadooghi-Alvandi,et al.  Comparing exponential location parameters with several controls under heteroscedasticity , 2014, Comput. Stat..

[30]  K. Krishnamoorthy,et al.  A parametric bootstrap approach for ANOVA with unequal variances: Fixed and random models , 2007, Comput. Stat. Data Anal..

[31]  G. S. James THE COMPARISON OF SEVERAL GROUPS OF OBSERVATIONS WHEN THE RATIOS OF THE POPULATION VARIANCES ARE UNKNOWN , 1951 .

[32]  H. K. Hsieh An exact test for comparing location parameters of K exponential distributions with unequal scales based on type II censored data , 1986 .

[33]  S. M. Sadooghi-Alvandi,et al.  One-way ANOVA with Unequal Variances , 2012 .