PROBLEMS, QUESTIONS, AND CONJECTURES ABOUT MAPPING CLASS GROUPS

We discuss a number of open problems about mapping class groups of surfaces. In particular, we discuss problems related to linearity, congruence subgroups, cohomology, pseudoAnosov stretch factors, Torelli groups, and normal subgroups. Beginning with the work of Max Dehn a century ago, the subject of mapping class groups has become a central topic in mathematics. It enjoys deep and varied connections to many other subjects, such as lowdimensional topology, geometric group theory, dynamics, Teichmüller theory, algebraic geometry, and number theory. The number of papers on mapping class groups recorded on MathSciNet in the last six decades has grown from 205 to 386 to 525 to 791 to 1,121 to 1,390. The subject seems to enjoy an endless supply of beautiful ideas, pictures, and theorems. At the 2017 Georgia International Topology Conference, the author gave a lecture called “Problems and progress on mapping class groups.” This paper is a summary of parts of that lecture. What follows is not a comprehensive list in any way, even among the topics it attempts to address. Rather it gives a mix of problems—from the famous and notoriously difficult to the eminently doable. There is little attempt to give background; the reader may find that in the book by Farb and the author [59] and in the other references therein. There are other problem lists on mapping class groups. In fact Farb has edited an entire book of problem lists on mapping class groups [53]. Ivanov’s problem list [81], which also appears in Farb’s book, has been particularly influential on the author of this article. That problem list is an updated version of a problem list written in conjunction with the 1993 Georgia International Topology Conference, twenty-four years earlier. Some of Ivanov’s problems also appeared in Kirby’s problem This material is based upon work supported by the National Science Foundation under Grant No. DMS 1057874.

[1]  D. Margalit,et al.  Right-angled Artin groups as normal subgroups of mapping class groups , 2020, Compositio Mathematica.

[2]  Shane Scott Combinatorial models for surface and free group symmetries , 2018 .

[3]  G. Tiozzo,et al.  Random walks, WPD actions, and the Cremona group , 2018, Proceedings of the London Mathematical Society.

[4]  M. Chan,et al.  Tropical curves, graph homology, and top weight cohomology of M_g , 2018 .

[5]  Bal'azs Strenner,et al.  The Arnoux-Yoccoz mapping classes via Penner's construction , 2018, Bulletin de la Société mathématique de France.

[6]  A. Gaifullin On infinitely generated homology of Torelli groups , 2018, 1803.09311.

[7]  S. Morita,et al.  Torelli group, Johnson kernel, and invariants of homology spheres , 2017, 1711.07855.

[8]  Mikhail Ershov,et al.  On finite generation of the Johnson filtrations , 2017, Journal of the European Mathematical Society.

[9]  Tara E. Brendle,et al.  Normal subgroups of mapping class groups and the metaconjecture of Ivanov , 2017, Journal of the American Mathematical Society.

[10]  Nick Salter Monodromy and vanishing cycles in toric surfaces , 2017, Inventiones mathematicae.

[11]  Justin Lanier Generating mapping class groups with elements of fixed finite order , 2017, Journal of Algebra.

[12]  B. Wiest,et al.  A positive proportion of elements of mapping class groups is pseudo‐Anosov , 2017, 1703.05044.

[13]  M. Ershov,et al.  On finiteness properties of the Johnson filtrations , 2017, Duke Mathematical Journal.

[14]  Rebecca R. Winarski,et al.  The Birman-Hilden theory , 2017, 1703.03448.

[15]  Neil J. Fullarton,et al.  Observed Periodicity Related to the Four-Strand Burau Representation , 2016, Exp. Math..

[16]  Charalampos Stylianakis,et al.  Congruence subgroups of braid groups , 2016, Int. J. Algebra Comput..

[17]  森田 茂之 TAUTOLOGICAL ALGEBRAS OF MODULI SPACES : SURVEY AND PROSPECT (Topology, Geometry and Algebra of low-dimensional manifolds) , 2016 .

[18]  Benson Farb,et al.  Moving homology classes in finite covers of graphs , 2015, 1509.09253.

[19]  Bal'azs Strenner Algebraic degrees of pseudo-Anosov stretch factors , 2015, 1506.06412.

[20]  N. V. Ivanov,et al.  Torelli buildings and their automorphisms , 2014, 1410.6223.

[21]  Hidetoshi Masai Fibered commensurability and arithmeticity of random mapping tori , 2014, 1408.0348.

[22]  Suhas Pandit A note on automorphisms of the sphere complex , 2014 .

[23]  James Cooper Two mod-p Johnson filtrations , 2014, 1402.4186.

[24]  Hyunshik Shin Algebraic degrees of stretch factors in mapping class groups , 2014, 1401.1836.

[25]  Andrew Putman,et al.  Generating the Johnson filtration , 2013, 1311.7150.

[26]  R. McNeill A new filtration of the Magnus kernel of the Torelli group , 2013, 1308.3686.

[27]  A. Lubotzky,et al.  Arithmetic quotients of the mapping class group , 2013, 1307.2593.

[28]  Igor Rivin Generic Phenomena in Groups -- Some Answers and Many Questions , 2012, 1211.6509.

[29]  Tara E. Brendle,et al.  Generators for the hyperelliptic Torelli group and the kernel of the Burau representation at $$t=-1$$t=-1 , 2012, 1211.4018.

[30]  A. Papadopoulos,et al.  Kerckhoff’s lines of minima in Teichmüller space , 2011 .

[31]  T. Venkataramana Image of the Burau Representation at $d$-th Roots of unity , 2012, 1205.6543.

[32]  Suhas Pandit The complex of non-separating embedded spheres , 2012, 1204.0338.

[33]  D. Osin,et al.  Hyperbolically embedded subgroups and rotating families in groups acting on hyperbolic spaces , 2011, 1111.7048.

[34]  C. Leininger,et al.  Small dilatation pseudo-Anosov homeomorphisms and 3-manifolds , 2011 .

[35]  Tara E. Brendle,et al.  Point pushing, homology, and the hyperelliptic involution , 2011, 1110.1397.

[36]  Kent,et al.  Congruence kernels around affine curves , 2011 .

[37]  B. Farb,et al.  The Rational Cohomology of the Mapping Class Group Vanishes in its Virtual Cohomological Dimension , 2011, 1108.0622.

[38]  S. Morita,et al.  Abelianizations of derivation Lie algebras of the free associative algebra and the free Lie algebra , 2011, 1107.3686.

[39]  Andrew Putman Small generating sets for the Torelli group , 2011, 1106.3294.

[40]  Andrew Putman,et al.  Abelian quotients of subgroups of the mapping class group and higher Prym representations , 2011, J. Lond. Math. Soc..

[41]  A. Hatcher A short exposition of the Madsen-Weiss theorem , 2011, 1103.5223.

[42]  R. Hain,et al.  THE ABELIANIZATION OF THE JOHNSON KERNEL , 2011, 1101.1392.

[43]  Nathalie Wahl Homological stability for mapping class groups of surfaces , 2010, 1006.4476.

[44]  Erwan Lanneau,et al.  On the minimum dilatation of braids on punctured discs , 2010, 1004.5344.

[45]  A. Dimca,et al.  Arithmetic group symmetry and finiteness properties of Torelli groups , 2010, 1002.0673.

[46]  B. Bowditch Atoroidal Surface Bundles Over Surfaces , 2009 .

[47]  Naoyuki Monden Generating the mapping class group by torsion elements of small order , 2009, Mathematical Proceedings of the Cambridge Philosophical Society.

[48]  B. Farb,et al.  Infinite generation of the kernels of the Magnus and Burau representations , 2009, 0909.4825.

[49]  O. Randal-Williams Resolutions of moduli spaces and homological stability , 2009, 0909.4278.

[50]  J. Souto,et al.  Automorphisms of the graph of free splittings , 2009, 0909.3660.

[51]  J. Ellenberg,et al.  Arithmetic Veech sublattices of $\SL(2,\Z)$ , 2009, 0909.1851.

[52]  A. Rapinchuk,et al.  The congruence subgroup property for $Aut F_2$: A group-theoretic proof of Asada's theorem , 2009, 0909.0304.

[53]  N. Mishachev,et al.  Madsen–Weiss for geometrically minded topologists , 2009, 0907.4226.

[54]  L. Funar,et al.  On Burau’s representations at roots of unity , 2009, 0907.0568.

[55]  S. Boldsen Improved homological stability for the mapping class group with integral or twisted coefficients , 2009, 0904.3269.

[56]  C. Leininger,et al.  Two-generator subgroups of the pure braid group , 2008, 0812.1783.

[57]  Andrew Putman A note on the abelianizations of finite-index subgroups of the mapping class group , 2008, 0812.0017.

[58]  M. Boggi The congruence subgroup property for the hyperelliptic modular group , 2008, 0803.3841.

[59]  Jin-Hwan Cho,et al.  The Minimal Dilatation of a Genus-Two Surface , 2008, Exp. Math..

[60]  Tara E. Brendle,et al.  Addendum to: Commensurations of the Johnson kernel , 2007, 0710.3089.

[61]  Tetsuhiro Moriyama THE MAPPING CLASS GROUP ACTION ON THE HOMOLOGY OF THE CONFIGURATION SPACES OF SURFACES TETSUHIRO , 2001 .

[62]  D. Margalit,et al.  THE DIMENSION OF THE TORELLI GROUP , 2007, 0709.0287.

[63]  Andrew Putman An Infinite Presentation of the Torelli Group , 2007, math/0703529.

[64]  K. Fujiwara,et al.  QUASI-HOMOMORPHISMS ON MAPPING CLASS GROUPS , 2007, math/0702273.

[65]  P. Boyland,et al.  The Burau estimate for the entropy of a braid , 2006, math/0612716.

[66]  Benson Farb Problems on Mapping Class Groups And Related Topics , 2006 .

[67]  N. V. Ivanov Fifteen problems about the mapping class groups , 2006, math/0608325.

[68]  M. Boggi Profinite Teichmüller theory , 2006 .

[69]  Benson Farb Some problems on mapping class groups and moduli space , 2006, math/0606432.

[70]  A. Lubotzky,et al.  Linear Representations of the Automorphism Group of a Free Group , 2006, math/0606182.

[71]  Joseph Maher Random walks on the mapping class group , 2006, math/0604433.

[72]  C. Leininger,et al.  The lower central series and pseudo-Anosov dilatations , 2006, math/0603675.

[73]  S. Morita,et al.  Torelli groups, extended Johnson homomorphisms, and new cycles on the moduli space of curves , 2006, Mathematical Proceedings of the Cambridge Philosophical Society.

[74]  R. Hain Finiteness and Torelli Spaces , 2005, math/0508541.

[75]  S. Morita Cohomological structure of the mapping class group and beyond , 2005, math/0507308.

[76]  C. Leininger,et al.  A combination theorem for Veech subgroups of the mapping class group , 2004, math/0410041.

[77]  J. Birman,et al.  Braids: A Survey , 2004, math/0409205.

[78]  O. Tommasi Rational cohomology of the moduli space of genus 4 curves , 2003, Compositio Mathematica.

[79]  M. Kassabov Generating Mapping Class Groups by Involutions , 2003, math/0311455.

[80]  Mustafa Korkmaz Generating the surface mapping class group by two elements , 2003, math/0309299.

[81]  I. Madsen,et al.  The stable moduli space of Riemann surfaces: Mumford's conjecture , 2002, math/0212321.

[82]  Benson Farb,et al.  Convex cocompact subgroups of mapping class groups , 2001, math/0106190.

[83]  Mamoru Asada The faithfulness of the monodromy representations associated with certain families of algebraic curves , 2001 .

[84]  Tara E. Brendle,et al.  On the linearity problem for mapping class groups , 2001, math/0103148.

[85]  J. McCarthy On the first cohomology group of cofinite subgroups in surface mapping class groups , 2001 .

[86]  S. Bigelow DOES THE JONES POLYNOMIAL DETECT THE UNKNOT , 2000, math/0012086.

[87]  Vladimir Turaev,et al.  Faithful Linear Representations of the Braid Groups , 2000, math/0006202.

[88]  Stephen J. Bigelow,et al.  Braid groups are linear , 2000, math/0005038.

[89]  Curtis T. McMullen,et al.  Polynomial invariants for fibered 3-manifolds and Teichmüller geodesics for foliations , 2000 .

[90]  F. Luo Torsion Elements in the Mapping Class Group of a Surface , 2000, math/0004048.

[91]  Feraydoun Taherkhani,et al.  The Kazhdan Property of the Mapping Class Group of Closed Surfaces and the First Cohomology Group of Its Cofinite Subgroups , 2000, Exp. Math..

[92]  S. Morita Structure of the mapping class groups of surfaces: a survey and a prospect , 1999, math/9911258.

[93]  Shinichi Mochizuki,et al.  The local pro-p anabelian geometry of curves , 1999 .

[94]  S. Bigelow The Burau representation is not faithful for n = 5 , 1999, math/9904100.

[95]  Toshiyuki Akita Homological infiniteness of Torelli groups , 1997, alg-geom/9712006.

[96]  C. Faber A Conjectural Description of the Tautological Ring of the Moduli Space of Curves , 1997, math/9711218.

[97]  S. Bachmuth Braid Groups are Linear Groups , 1996 .

[98]  R. Hain Torelli Groups and Geometry of Moduli Spaces of Curves , 1994, alg-geom/9403015.

[99]  S. Morita The extension of Johnson's homomorphism from the Torelli group to the mapping class group , 1993 .

[100]  Darren D. Long,et al.  The Burau representation is not faithful for n ≥ 6 , 1993 .

[101]  G. Mess The Torelli groups for genus 2 and 3 surfaces , 1992 .

[102]  C. Procesi,et al.  The automorphism group of a free group is not linear , 1992 .

[103]  John Atwell Moody,et al.  The Burau representation of the braid group $B_n$ is unfaithful for large $n$ , 1991 .

[104]  R. Penner Bounds on least dilatations , 1991 .

[105]  Ruth Lawrence,et al.  Homological representations of the Hecke algebra , 1990 .

[106]  Steven P. Diaz,et al.  Every curve is a hurwitz space , 1989 .

[107]  W. Thurston On the geometry and dynamics of diffeomorphisms of surfaces , 1988 .

[108]  J. Harer,et al.  The Euler characteristic of the moduli space of curves , 1986 .

[109]  David Fried Growth rate of surface homeomorphisms and flow equivalence , 1985, Ergodic Theory and Dynamical Systems.

[110]  John Harer,et al.  Stability of the homology of the mapping class groups of orientable surfaces , 1985 .

[111]  Dennis Johnson,et al.  The structure of the Torelli group I : A finite set of generators for J , 1983 .

[112]  David Fried Flow equivalence, hyperbolic systems and a new zeta function for flows , 1982 .

[113]  N. Smythe The Burau representation of the braid group is pairwise free , 1979 .

[114]  J. Birman Braids, Links, and Mapping Class Groups. , 1975 .

[115]  J. Igusa,et al.  Arithmetic Variety of Moduli for Genus Two , 1960 .

[116]  Werner Burau,et al.  Über Zopfgruppen und gleichsinnig verdrillte Verkettungen , 1935 .

[117]  W. Magnus Beziehungen zwischen Gruppen und Idealen in einem speziellen Ring , 1935 .

[118]  Tara E. Brendle ERRATUM TO: COMMENSURATIONS OF THE JOHNSON KERNEL , 2018 .

[119]  Jahrme Risner,et al.  Braid Groups , 2016 .

[120]  Cohen – Wu,et al.  THE LEVEL FOUR BRAID GROUP , 2015 .

[121]  T. Tucker Two Notes on Maps and Surface Symmetry , 2014 .

[122]  Benson Farb,et al.  A primer on mapping class groups , 2013 .

[123]  D. McReynolds The congruence subgroup problem for pure braid groups: Thurston's proof , 2010 .

[124]  J. Gambaudo,et al.  Braids and Signatures , 2005 .

[125]  Nikolai V. Ivanov,et al.  Automorphism of complexes of curves and of Teichmuller spaces : Interna , 1997 .

[126]  E. Looijenga Prym Representations of Mapping Class Groups , 1997 .

[127]  S. Mochizuki The Profinite Grothendieck Conjecture for Closed Hyperbolic Curves over Number Fields , 1996 .

[128]  E. Looijenga Cohomology of M3 and M1/3 , 1993 .

[129]  William P. Thurston,et al.  A norm for the homology of 3-manifolds , 1986 .

[130]  D. L. Johnson,et al.  The structure of the Torelli group—III: The abelianization of I , 1985 .

[131]  D. L. Johnson The structure of the Torelli group—II: A characterization of the group generated by twists on bounding curves , 1985 .

[132]  D. L. Johnson A survey of the Torelli group , 1983 .

[133]  C. Maclachlan Modulus space is simply-connected , 1971 .

[134]  V. I. Arnol’d Remark on the branching of hyperelliptic integrals as functions of the parameters , 1968 .

[135]  Hyman Bass,et al.  Solution of the congruence subgroup problem for SLn (n ≥ 3) and Sp2n (n ≥ 2) , 1967 .