Optimal space–time adaptive wavelet methods for degenerate parabolic PDEs

We analyze parabolic PDEs with certain type of weakly singular or degenerate time-dependent coefficients and prove existence and uniqueness of weak solutions in an appropriate sense. A localization of the PDEs to a bounded spatial domain is justified. For the numerical solution a space–time wavelet discretization is employed. An optimality result for the iterative solution of the arising systems can be obtained. Finally, applications to fractional Brownian motion models in option pricing are presented.

[1]  乔花玲,et al.  关于Semigroups of Linear Operators and Applications to Partial Differential Equations的两个注解 , 2003 .

[2]  Robert J. Elliott,et al.  Fractional Brownian Motion and Financial Modelling , 2001 .

[3]  D. Hardin,et al.  Orthogonal polynomials and the construction of piecewise polynomial smooth wavelets , 1999 .

[4]  Winfried Sickel,et al.  Best m-term aproximation and tensor product of Sobolev and Besov spaces-the case of non-compact embeddings , 2010 .

[5]  Christoph Schwab,et al.  Fast deterministic pricing of options on Lévy driven assets , 2002 .

[6]  Vom Fachbereich Mathematik,et al.  Stabile biorthogonale Spline-Waveletbasen auf dem Intervall , 2006 .

[7]  B. Øksendal,et al.  Stochastic Calculus for Fractional Brownian Motion and Applications , 2008 .

[8]  A. Wood,et al.  Simulation of Stationary Gaussian Processes in [0, 1] d , 1994 .

[9]  Jacques-Louis Lions,et al.  Mathematical Analysis and Numerical Methods for Science and Technology: Volume 5 Evolution Problems I , 1992 .

[10]  P. Abry,et al.  The wavelet based synthesis for fractional Brownian motion , 1996 .

[11]  Gary R. Consolazio,et al.  Finite Elements , 2007, Handbook of Dynamic System Modeling.

[12]  R. Elliott,et al.  Perpetual American options with fractional Brownian motion , 2004 .

[13]  John Sylvester,et al.  The heat equation and reflected Brownian motion in time-dependent domains , 2004 .

[14]  Michael Griebel,et al.  Tensor product type subspace splittings and multilevel iterative methods for anisotropic problems , 1995, Adv. Comput. Math..

[15]  C. DeWitt-Morette,et al.  Mathematical Analysis and Numerical Methods for Science and Technology , 1990 .

[16]  Rob P. Stevenson,et al.  Space-time adaptive wavelet methods for parabolic evolution problems , 2009, Math. Comput..

[17]  Tammo Jan Dijkema,et al.  Adaptive tensor product wavelet methods for solving PDEs , 2009 .

[18]  Herbert Amann,et al.  Linear and Quasilinear Parabolic Problems , 2019, Monographs in Mathematics.

[19]  Jacques-Louis Lions,et al.  Mathematical Analysis and Numerical Methods for Science and Technology: Volume 3 Spectral Theory and Applications , 1990 .

[20]  M. Reed,et al.  Methods of Mathematical Physics , 1980 .

[21]  Winfried Sickel,et al.  Best m-Term Approximation and Sobolev–Besov Spaces of Dominating Mixed Smoothness—the Case of Compact Embeddings , 2012 .

[22]  C J Isham,et al.  Methods of Modern Mathematical Physics, Vol 1: Functional Analysis , 1972 .

[23]  W. Dahmen,et al.  Biorthogonal Spline Wavelets on the Interval—Stability and Moment Conditions , 1999 .

[24]  Reinhold Schneider,et al.  Multiresolution weighted norm equivalences and applications , 2004, Numerische Mathematik.

[25]  Rob Stevenson,et al.  Adaptive wavelet algorithms for elliptic PDE's on product domains , 2008, Math. Comput..

[26]  Wolfgang Dahmen,et al.  Adaptive wavelet methods for elliptic operator equations: Convergence rates , 2001, Math. Comput..

[27]  Miriam Primbs Stabile biortogonale Spline-Waveletbasen auf dem Intervall , 2006 .

[28]  P. Grisvard Espaces intermédiaires entre espaces de Sobolev avec poids , 1963 .

[29]  George C. Donovan,et al.  Intertwining multiresolution analyses and the construction of piecewise-polynomial wavelets , 1996 .

[30]  Rob Stevenson,et al.  An Adaptive Wavelet Method for Solving High-Dimensional Elliptic PDEs , 2009 .

[31]  Ilkka Norros,et al.  On the Use of Fractional Brownian Motion in the Theory of Connectionless Networks , 1995, IEEE J. Sel. Areas Commun..

[32]  R. DeVore,et al.  Compression of wavelet decompositions , 1992 .

[33]  C. Necula Option Pricing in a Fractional Brownian Motion Environment , 2002 .

[34]  A. Cohen Numerical Analysis of Wavelet Methods , 2003 .

[35]  Wolfgang Dahmen,et al.  Adaptive Wavelet Methods II—Beyond the Elliptic Case , 2002, Found. Comput. Math..

[36]  Fred Espen Benth,et al.  On arbitrage‐free pricing of weather derivatives based on fractional Brownian motion , 2003 .

[37]  I. Babuska Error-bounds for finite element method , 1971 .

[38]  B. Øksendal,et al.  FRACTIONAL WHITE NOISE CALCULUS AND APPLICATIONS TO FINANCE , 2003 .

[39]  B. Mandelbrot,et al.  Fractional Brownian Motions, Fractional Noises and Applications , 1968 .

[40]  Lenses in skew Brownian flow , 2004, math/0503586.

[41]  Karsten Urban,et al.  Wavelet Methods for Elliptic Partial Differential Equations , 2008 .

[42]  Rob P. Stevenson,et al.  Adaptive Wavelet Schemes for Parabolic Problems: Sparse Matrices and Numerical Results , 2011, SIAM J. Numer. Anal..