Sample-based estimation of correlation ratio with polynomial approximation

Sensitivity analysis has become a natural step in the uncertainty analysis framework. As there is no general sensitivity measure that would capture all information on impact of input factors on model output, analysts tend to combine various measures to obtain a broader image of interactions between different modes. This article concentrates on the correlation ratio, demonstrates methods for calculating this quantity efficiently and accurately, and compares the results. A new method inspired by artificial intelligence techniques emerges as outperforming the familiar methods.

[1]  Stefano Tarantola,et al.  Winding Stairs: A sampling tool to compute sensitivity indices , 2000, Stat. Comput..

[2]  LewandowskiDaniel,et al.  Sample-based estimation of correlation ratio with polynomial approximation , 2007 .

[3]  Peter Whittle,et al.  Probability via expectation , 1992 .

[4]  H. Rabitz,et al.  Practical Approaches To Construct RS-HDMR Component Functions , 2002 .

[5]  Stefano Tarantola,et al.  A Quantitative Model-Independent Method for Global Sensitivity Analysis of Model Output , 1999, Technometrics.

[6]  D. Kleinbaum,et al.  Applied Regression Analysis and Other Multivariate Methods , 1978 .

[7]  R. Cooke,et al.  BAYESIAN SENSITIVITY ANALYSIS , 2001 .

[8]  Karl Pearson,et al.  Mathematical contributions to the theory of evolution.―On homotyposis in homologous but differentiated organs , 1903, Proceedings of the Royal Society of London.

[9]  D. Kleinbaum,et al.  Applied Regression Analysis and Multivariable Methods , 1999 .

[10]  A. Saltelli,et al.  Sensitivity Anaysis as an Ingredient of Modeling , 2000 .

[11]  A. Saltelli,et al.  A quantitative model-independent method for global sensitivity analysis of model output , 1999 .

[12]  N. Draper,et al.  Applied Regression Analysis , 1966 .

[13]  J. M. Hammersley,et al.  Basic Concepts of Probability and Statistics , 1964 .

[14]  Dorota Kurowicka,et al.  Uncertainty and Sensitivity Analyses of a Dynamic Economic Evaluation Model for Vaccination Programs , 2008, Medical decision making : an international journal of the Society for Medical Decision Making.

[15]  Michael D. McKay,et al.  Nonparametric variance-based methods of assessing uncertainty importance , 1997 .

[16]  Stefano Tarantola,et al.  Sensitivity analysis of model output: variance-based methods make the difference , 1997, WSC '97.

[17]  T. Ishigami,et al.  An importance quantification technique in uncertainty analysis for computer models , 1990, [1990] Proceedings. First International Symposium on Uncertainty Modeling and Analysis.

[18]  A. O'Hagan,et al.  Probabilistic sensitivity analysis of complex models: a Bayesian approach , 2004 .

[19]  H. Rabitz,et al.  Random sampling-high dimensional model representation (RS-HDMR) and orthogonality of its different order component functions. , 2006, The journal of physical chemistry. A.

[20]  Joseph A. C. Delaney Sensitivity analysis , 2018, The African Continental Free Trade Area: Economic and Distributional Effects.

[21]  D. G. Beech,et al.  The Advanced Theory of Statistics. Volume 2: Inference and Relationship. , 1962 .

[22]  M.J.W. Jansen,et al.  Review of Saltelli, A. & Chan, K. & E.M.Scott (Eds) (2000), Sensitivity analysis. Wiley (2000) , 2001 .

[23]  Ilya M. Sobol,et al.  Sensitivity Estimates for Nonlinear Mathematical Models , 1993 .

[24]  N. Draper,et al.  Applied Regression Analysis: Draper/Applied Regression Analysis , 1998 .

[25]  J. V. Rosenhead,et al.  The Advanced Theory of Statistics: Volume 2: Inference and Relationship , 1963 .

[26]  Stefano Tarantola,et al.  Sensitivity Analysis as an Ingredient of Modeling , 2000 .