Computation of the high temperature Coulomb density matrix in periodic boundary conditions

Abstract The high temperature many-body density matrix is fundamental to path integral computation. The pair approximation, where the interaction part is written as a product of pair density matrices, is commonly used and is accurate to order τ 2 , where τ is the step size in the imaginary time. Here we present a method for systems with Coulomb interactions in periodic boundary conditions that consistently treats the all interactions with the same level of accuracy. It is shown that this leads to a more accurate high temperature solution of the Bloch equation. The method is applied to many-body simulation and tests for the isolated hydrogen atom and molecule are presented.

[1]  B. Militzer,et al.  First-principles equation of state calculations of warm dense nitrogen , 2016, 1601.05787.

[2]  Burkhard Militzer,et al.  Development of Path Integral Monte Carlo Simulations with Localized Nodal Surfaces for Second-Row Elements. , 2015, Physical review letters.

[3]  Spin polarization of the low-density three-dimensional electron gas. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[4]  Simulations of dense atomic hydrogen in the Wigner crystal phase , 2005, cond-mat/0506463.

[5]  B. Militzer Correlations in hot dense helium , 2009, 0902.4281.

[6]  R. Storer PATH-INTEGRAL CALCULATION OF THE QUANTUM-STATISTICAL DENSITY MATRIX FOR ATTRACTIVE COULOMB FORCES. , 1968 .

[7]  B. Bernu,et al.  Optimized periodic 1/r Coulomb potential in two dimensions , 2004, cond-mat/0407244.

[8]  S. Skupsky,et al.  Impact of first-principles properties of deuterium–tritium on inertial confinement fusion target designsa) , 2015 .

[9]  D. Ceperley,et al.  Simulation of quantum many-body systems by path-integral methods , 1984 .

[10]  Molecular dissociation in hot, dense hydrogen. , 1996, Physical review letters.

[11]  L. C. Woods Physics of plasmas , 2003 .

[12]  B. Militzer,et al.  First-principles equation of state and electronic properties of warm dense oxygen. , 2015, The Journal of chemical physics.

[13]  Ceperley,et al.  Equation of state of the hydrogen plasma by path integral Monte Carlo simulation. , 1994, Physical review letters.

[14]  Dense plasma effects on nuclear reaction rates. , 2004, Physical review letters.

[15]  David M. Ceperley,et al.  An optimized method for treating long-range potentials , 1995 .

[16]  B. Militzer Hydrogen–Helium Mixtures at High Pressure , 2004, cond-mat/0411458.

[17]  Jones,et al.  Crystallization of the one-component plasma at finite temperature. , 1996, Physical review letters.

[18]  Lee,et al.  High-accuracy Trotter-formula method for path integrals. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[19]  D. Ceperley Path integrals in the theory of condensed helium , 1995 .

[20]  Pollock,et al.  Path-integral computation of superfluid densities. , 1987, Physical review. B, Condensed matter.

[21]  L. Wolniewicz,et al.  Accurate Computation of Vibronic Energies and of Some Expectation Values for H2, D2, and T2 , 1964 .

[22]  B. Militzer,et al.  A multiphase equation of state for carbon addressing high pressures and temperatures , 2013, 1311.4577.

[23]  B. Militzer Equation of state calculations of hydrogen-helium mixtures in solar and extrasolar giant planets , 2013 .

[24]  R. Storer,et al.  The Structure of Quantum Fluids: Helium and Neon , 1973 .

[25]  S. Skupsky,et al.  First-principles equation-of-state table of deuterium for inertial confinement fusion applications , 2011, 1110.0001.

[26]  Ericka Stricklin-Parker,et al.  Ann , 2005 .

[27]  B. Militzer,et al.  Path integral Monte Carlo simulation of the low-density hydrogen plasma. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[28]  First principles calculations of shock compressed fluid helium. , 2006, Physical review letters.

[29]  R. H. Pratt,et al.  Coulomb Green's Function in Closed Form , 1963 .

[30]  E. L. Pollock Properties and computation of the Coulomb pair density matrix , 1988 .

[31]  Tanmoy Das,et al.  Superconductivity and topological Fermi surface transitions in electron-doped cuprates near optimal doping , 2007, 0711.1504.

[32]  B. Militzer,et al.  Strong coupling and degeneracy effects in inertial confinement fusion implosions. , 2010, Physical review letters.

[33]  D. Ceperley,et al.  Path-integral Monte Carlo simulation of the warm dense homogeneous electron gas. , 2012, Physical review letters.

[34]  J. Kress,et al.  Calculation of a deuterium double shock Hugoniot from ab initio simulations. , 2001, Physical review letters.

[35]  R. Needs,et al.  Quantum Monte Carlo simulations of solids , 2001 .

[36]  M. Mišík,et al.  Oxford University Press , 1968, PMLA/Publications of the Modern Language Association of America.

[37]  Ceperley,et al.  Path integral monte carlo calculation of the deuterium hugoniot , 2000, Physical review letters.

[38]  Equilibrium contact probabilities in dense plasmas , 2004, cond-mat/0408551.

[39]  B. Militzer,et al.  All-electron path integral Monte Carlo simulations of warm dense matter: application to water and carbon plasmas. , 2012, Physical review letters.

[40]  Burkhard Militzer,et al.  First-principles simulations and shock Hugoniot calculations of warm dense neon , 2014 .

[41]  R. Feynman The ?-Transition in Liquid Helium , 1953 .