Magnetic and noble metal nanocomposites for separation and optical detection of biological species.

Nanoalloys and nanocomposites are widely studied classes of nanomaterials within the context of biological systems. They are of immense interest because of the possibility of tuning the optical, magnetic, electronic and chemical properties through particle composition and internal architecture. In principle these properties can therefore be optimized for application in biological detections such as of DNA sequences, bacteria, viruses, antibodies, antigens, and cancer cells. This article presents an overview of methods currently used for nanoalloy and nanocomposite synthesis and characterisation, focusing on Au-Ag and FexOy@Au structures as primary components in detection platforms for plasmonic and magnetically enabled plasmonic bio-sensing.

[1]  Moreno Meneghetti,et al.  What controls the composition and the structure of nanomaterials generated by laser ablation in liquid solution? , 2013, Physical chemistry chemical physics : PCCP.

[2]  Q. Tu,et al.  Diagnostic applications of Raman spectroscopy. , 2012, Nanomedicine : nanotechnology, biology, and medicine.

[3]  S. Macnaughton,et al.  Developments in terrestrial bacterial remediation of metals. , 1999, Current opinion in biotechnology.

[4]  R. Johnston,et al.  The development of metallic behaviour in clusters , 1998, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[5]  N. Tanaka,et al.  Single-step synthesis of gold-silver alloy nanoparticles in ionic liquids by a sputter deposition technique. , 2008, Chemical communications.

[6]  Duncan Graham,et al.  Surface enhanced Raman spectroscopy (SERS): Potential applications for disease detection and treatment , 2014 .

[7]  Rasesh Y Parikh,et al.  Biological synthesis of metallic nanoparticles. , 2010, Nanomedicine : nanotechnology, biology, and medicine.

[8]  Smadar Cohen,et al.  Magnetic nanoparticle-based approaches to locally target therapy and enhance tissue regeneration in vivo. , 2012, Nanomedicine.

[9]  Chad A Mirkin,et al.  Nanostructures in biodiagnostics. , 2005, Chemical reviews.

[10]  Patrick A Johnson,et al.  Surface-enhanced Raman scattering detection of DNAs derived from virus genomes using Au-coated paramagnetic nanoparticles. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[11]  Masayuki Nogami,et al.  Preparation of Au–Ag, Ag–Au core–shell bimetallic nanoparticles for surface-enhanced Raman scattering , 2008 .

[12]  J. Xie,et al.  Luminescent noble metal nanoclusters as an emerging optical probe for sensor development. , 2013, Chemistry, an Asian journal.

[13]  H. Zeng,et al.  Fabrication and Size-Dependent Optical Properties of FeO Nanoparticles Induced by Laser Ablation in a Liquid Medium , 2008 .

[14]  Kwan Kim,et al.  Production of Au-Ag alloy nanoparticles by laser ablation of bulk alloys. , 2001, Chemical communications.

[15]  David I. Ellis,et al.  Illuminating disease and enlightening biomedicine: Raman spectroscopy as a diagnostic tool. , 2013, The Analyst.

[16]  Zhong Lin Wang,et al.  Bimagnetic Core/Shell FePt/Fe3O4 Nanoparticles , 2004 .

[17]  Dongyun Zheng,et al.  Preparation and application of a novel vanillin sensor based on biosynthesis of Au-Ag alloy nanoparticles , 2010 .

[18]  Roy L. Johnston,et al.  Theoretical study of Cu–Au nanoalloy clusters using a genetic algorithm , 2002 .

[19]  Chad A Mirkin,et al.  Three-layer composite magnetic nanoparticle probes for DNA. , 2005, Journal of the American Chemical Society.

[20]  Luis M Liz-Marzán,et al.  Tailoring surface plasmons through the morphology and assembly of metal nanoparticles. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[21]  Kun Liu,et al.  Hydrogen Peroxide Biosensor Based on Immobilization of Hemoglobin on Au@Ag Nanoparticles Modified Carbon Ionic Liquid Electrode , 2013 .

[22]  P. Nordlander,et al.  Magnetic-plasmonic core-shell nanoparticles. , 2009, ACS nano.

[23]  A. Ingle,et al.  Exploitation of Aspergillus niger for Synthesis of Silver Nanoparticles , 2008 .

[24]  Massimiliano Di Ventra,et al.  Introduction to Nanoscale Science and Technology , 2004 .

[25]  G. A. Shafeev,et al.  NANOPARTICLES: Formation of the alloy of Au and Ag nanoparticles upon laser irradiation of the mixture of their colloidal solutions , 2004 .

[26]  Andreas Knorr,et al.  Novel Au-Ag hybrid device for electrochemical SE(R)R spectroscopy in a wide potential and spectral range. , 2009, Nano letters.

[27]  Satyajyoti Senapati,et al.  Intracellular synthesis of gold nanoparticles by a novel alkalotolerant actinomycete, Rhodococcus species , 2003 .

[28]  Jin Luo,et al.  Monodispersed core-shell Fe3O4@Au nanoparticles. , 2005, The journal of physical chemistry. B.

[29]  Zhong-Qun Tian,et al.  Synthesis of AgcoreAushell bimetallic nanoparticles for immunoassay based on surface-enhanced Raman spectroscopy. , 2006, The journal of physical chemistry. B.

[30]  Colm T. Mallon,et al.  DNA mediated immobilisation of electrocatalytic platinum nanoparticles in gold nanocavity arrays. , 2013, Chemical communications.

[31]  Jiale Huang,et al.  Synthesis of gold nanoplates with bioreducing agent using syringe pumps: A kinetic control , 2012 .

[32]  Michael J Sailor,et al.  SERS‐Coded Gold Nanorods as a Multifunctional Platform for Densely Multiplexed Near‐Infrared Imaging and Photothermal Heating , 2009, Advanced materials.

[33]  Jens K. Nørskov,et al.  Structure and Reactivity of Ni−Au Nanoparticle Catalysts , 2001 .

[34]  Shouheng Sun,et al.  Dumbbell-like bifunctional Au-Fe3O4 nanoparticles. , 2005, Nano letters.

[35]  S. Pal,et al.  Luminescent, bimetallic AuAg alloy quantum clusters in protein templates. , 2012, Nanoscale.

[36]  R. Mehra,et al.  Metal ion resistance in fungi: Molecular mechanisms and their regulated expression , 1991, Journal of cellular biochemistry.

[37]  Satyajyoti Senapati,et al.  Extracellular biosynthesis of bimetallic Au-Ag alloy nanoparticles. , 2005, Small.

[38]  F. Lanni,et al.  Synthesis and Single‐Particle Optical Detection of Low‐Polydispersity Plasmonic‐Superparamagnetic Nanoparticles , 2008 .

[39]  A. Falqui,et al.  Synthesis and plasmonic properties of monodisperse Au–Ag alloy nanoparticles of different compositions from a single-source organometallic precursor , 2014 .

[40]  F Baletto,et al.  Growth of three-shell onionlike bimetallic nanoparticles. , 2003, Physical review letters.

[41]  Zhichuan J. Xu,et al.  Magnetic core/shell Fe3O4/Au and Fe3O4/Au/Ag nanoparticles with tunable plasmonic properties. , 2007, Journal of the American Chemical Society.

[42]  Tuan Vo-Dinh,et al.  Multiplex detection of disease biomarkers using SERS molecular sentinel-on-chip , 2014, Analytical and Bioanalytical Chemistry.

[43]  JitKang Lim,et al.  Composite magnetic–plasmonic nanoparticles for biomedicine: Manipulation and imaging , 2013 .

[44]  J. Lee,et al.  Synthesis of Monodisperse AgAu Alloy Nanoparticles with Independently Tunable Morphology, Composition, Size, and Surface Chemistry and Their 3‐D Superlattices , 2009 .

[45]  Tuan Vo-Dinh,et al.  DNA bioassay-on-chip using SERS detection for dengue diagnosis. , 2014, The Analyst.

[46]  C. O'connor,et al.  Attachment of gold nanograins onto colloidal magnetite nanocrystals , 2005 .

[47]  Lauren A Austin,et al.  Plasmonic enhancement of photodynamic cancer therapy , 2013 .

[48]  J. Ying,et al.  Reverse microemulsion-mediated synthesis of silica-coated gold and silver nanoparticles. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[49]  Younan Xia,et al.  Gold and silver nanoparticles: a class of chromophores with colors tunable in the range from 400 to 750 nm. , 2003, The Analyst.

[50]  Chit Yaw Fu,et al.  Clinical SERS: are we there yet? , 2011, Journal of biophotonics.

[51]  Shikuan Yang,et al.  Nanomaterials via Laser Ablation/Irradiation in Liquid: A Review , 2012 .

[52]  Yasuda,et al.  Spontaneous alloying of zinc atoms into gold clusters and formation of compound clusters. , 1992, Physical review letters.

[53]  M. Meunier,et al.  Femtosecond Laser Synthesis of AuAg Nanoalloys: Photoinduced Oxidation and Ions Release , 2010 .

[54]  Jacek Waluk,et al.  Nanostructured silver-gold bimetallic SERS substrates for selective identification of bacteria in human blood. , 2014, The Analyst.

[55]  Anant Kumar Singh,et al.  Popcorn-shaped magnetic core-plasmonic shell multifunctional nanoparticles for the targeted magnetic separation and enrichment, label-free SERS imaging, and photothermal destruction of multidrug-resistant bacteria. , 2013, Chemistry.

[56]  C. Mijangos,et al.  Preparation and characterization of poly(vinyl alcohol)‐based magnetic nanocomposites. 1. Thermal and mechanical properties , 2001 .

[57]  Priyabrata Mukherjee,et al.  Biological properties of "naked" metal nanoparticles. , 2008, Advanced drug delivery reviews.

[58]  Bing Zhao,et al.  Seed-mediated growth of large, monodisperse core-shell gold-silver nanoparticles with Ag-like optical properties. , 2002, Chemical communications.

[59]  R. Kumar,et al.  Extracellular Synthesis of Gold Nanoparticles by the Fungus Fusarium oxysporum , 2002, Chembiochem : a European journal of chemical biology.

[60]  Shanshan Wang,et al.  Multifunctional superparamagnetic nanoshells: combining two-photon luminescence imaging, surface-enhanced Raman scattering and magnetic separation. , 2014, Nanoscale.

[61]  M. Quinten,et al.  Binary clusters: homogeneous alloys and nucleus-shell structures , 1993 .

[62]  Absar Ahmad,et al.  BIOSYNTHESIS OF METAL NANOPARTICLES USING FUNGI AND ACTINOMYCETE , 2003 .

[63]  F Baletto,et al.  Magic polyicosahedral core-shell clusters. , 2004, Physical review letters.

[64]  Yang Liu,et al.  SERS nanosensors and nanoreporters: golden opportunities in biomedical applications. , 2015, Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology.

[65]  Hao Zeng,et al.  Monodisperse MFe2O4 (M = Fe, Co, Mn) nanoparticles. , 2004, Journal of the American Chemical Society.

[66]  Zhuyuan Wang,et al.  SERS‐Fluorescence Joint Spectral Encoded Magnetic Nanoprobes for Multiplex Cancer Cell Separation , 2014, Advanced healthcare materials.

[67]  Stephan Barcikowski,et al.  Advanced nanoparticle generation and excitation by lasers in liquids. , 2013, Physical chemistry chemical physics : PCCP.

[68]  S. Patskovsky,et al.  Hyperspectral reflected light microscopy of plasmonic Au/Ag alloy nanoparticles incubated as multiplex chromatic biomarkers with cancer cells. , 2014, The Analyst.

[69]  William W. Yu,et al.  Synthesis of monodisperse iron oxide nanocrystals by thermal decomposition of iron carboxylate salts. , 2004, Chemical communications.

[70]  M. Meneghetti,et al.  Laser ablation synthesis in solution and size manipulation of noble metal nanoparticles. , 2009, Physical chemistry chemical physics : PCCP.

[71]  A. Belcher,et al.  Biological Routes to Metal Alloy Ferromagnetic Nanostructures , 2004 .

[72]  K. Raj,et al.  Advances in ferrofluid technology , 1995 .

[73]  Priyabrata Mukherjee,et al.  Bioreduktion von AuCl4−-Ionen zu Au-Nanopartikeln durch eineVerticillium-Pilzart , 2001 .

[74]  Younan Xia,et al.  Chemical synthesis of novel plasmonic nanoparticles. , 2009, Annual review of physical chemistry.

[75]  Chad A Mirkin,et al.  Self-Assembly of Mesoscopic Metal-Polymer Amphiphiles , 2004, Science.

[76]  H. Ghorbani,et al.  Biological and Non-biological Methods for Silver Nanoparticles Synthesis , 2011 .

[77]  N. Jana,et al.  Sniffing a single molecule through SERS using Aucore-Agshell bimetallic nanoparticles , 2004 .

[78]  A. Nurmikko,et al.  Enhanced magnetooptical response in dumbbell-like Ag-CoFe2O4 nanoparticle pairs. , 2005, Nano letters.

[79]  Bai-yun Huang,et al.  Size-, shape- and composition-dependent alloying ability of bimetallic nanoparticles. , 2011, Chemphyschem : a European journal of chemical physics and physical chemistry.

[80]  Sudhakar R. Sainkar,et al.  BIOREDUCTION OF AUCL4− IONS BY THE FUNGUS, VERTICILLIUM SP. AND SURFACE TRAPPING OF THE GOLD NANOPARTICLES FORMED , 2001 .

[81]  S. Han,et al.  Synthesis and Characterization of Flower-Shaped Porous Au−Pd Alloy Nanoparticles , 2008 .

[82]  Taewook Kang,et al.  Plasmon resonance energy transfer (PRET)-based molecular imaging of cytochrome c in living cells. , 2009, Nano letters.

[83]  Absar Ahmad,et al.  Rapid synthesis of Au, Ag, and bimetallic Au core-Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth. , 2004, Journal of colloid and interface science.

[84]  N. Dilbaghi,et al.  Nano-regenerative medicine towards clinical outcome of stem cell and tissue engineering in humans , 2012, Journal of cellular and molecular medicine.

[85]  M. Farle,et al.  Bifunctional gold-coated magnetic silica spheres , 2006 .

[86]  Paresh Chandra Ray,et al.  Multifunctional plasmonic shell-magnetic core nanoparticles for targeted diagnostics, isolation, and photothermal destruction of tumor cells. , 2012, ACS nano.

[87]  H. Barr,et al.  Advances in the clinical application of Raman spectroscopy for cancer diagnostics. , 2013, Photodiagnosis and photodynamic therapy.

[88]  Masanori Murakami,et al.  Development of refractory ohmic contact materials for gallium arsenide compound semiconductors , 2002 .

[89]  R D Tyagi,et al.  Synthesis of nanoparticles by microorganisms and their application in enhancing microbiological reaction rates. , 2011, Chemosphere.

[90]  H. Zeng,et al.  Rapid synthesis of highly monodisperse Au(x)Ag(1-x) alloy nanoparticles via a half-seeding approach. , 2011, Langmuir : the ACS journal of surfaces and colloids.

[91]  A. Diaspro,et al.  Laser synthesis of ligand-free bimetallic nanoparticles for plasmonic applications. , 2013, Physical chemistry chemical physics : PCCP.

[92]  D. Bochicchio,et al.  Size-dependent transition to high-symmetry chiral structures in AgCu, AgCo, AgNi, and AuNi nanoalloys. , 2010, Nano letters.

[93]  G. Southam,et al.  The occurrence of sulfur and phosphorus within bacterially derived crystalline and pseudocrystalline octahedral gold formed in vitro , 1996 .

[94]  S. J. Lee,et al.  Surface enrichment of Ag atoms in Au/Ag alloy nanoparticles revealed by surface enhanced Raman scattering spectroscopy , 2005 .

[95]  Yena Kim,et al.  Synthesis and Electrocatalytic Activity of Au−Pd Alloy Nanodendrites for Ethanol Oxidation , 2010 .

[96]  Paul Mulvaney,et al.  Controlled Method for Silica Coating of Silver Colloids. Influence of Coating on the Rate of Chemical Reactions , 1998 .

[97]  Hauke Kloust,et al.  A general route towards well-defined magneto- or fluorescent-plasmonic nanohybrids. , 2013, Nanoscale.

[98]  Elena V. Shevchenko,et al.  Gold/Iron Oxide Core/Hollow‐Shell Nanoparticles , 2008 .

[99]  Seong Kyu Kim,et al.  Multiple surface plasmon modes for gold/silver alloy nanorods. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[100]  Jian-hui Jiang,et al.  Sub-attomolar HIV-1 DNA detection using surface-enhanced Raman spectroscopy. , 2010, The Analyst.

[101]  S. Gurunathan,et al.  Biosynthesis of silver nanocrystals by Bacillus licheniformis. , 2008, Colloids and surfaces. B, Biointerfaces.

[102]  Jian-Feng Li,et al.  Expanding generality of surface-enhanced Raman spectroscopy with borrowing SERS activity strategy. , 2007, Chemical communications.

[103]  B. Hwang,et al.  Surface-enhanced Raman scattering (SERS) from Au:Ag bimetallic nanoparticles: the effect of the molecular probe , 2013 .

[104]  R. V. Van Duyne,et al.  Localized surface plasmon resonance spectroscopy and sensing. , 2007, Annual review of physical chemistry.

[105]  Ping Wu,et al.  Aptamer-guided silver-gold bimetallic nanostructures with highly active surface-enhanced Raman scattering for specific detection and near-infrared photothermal therapy of human breast cancer cells. , 2012, Analytical chemistry.

[106]  Roy L Johnston,et al.  Energetic, electronic, and thermal effects on structural properties of Ag-Au nanoalloys. , 2008, ACS nano.

[107]  H. Yin,et al.  One-Pot Synthesis of Oleylamine Coated AuAg Alloy NPs and Their Catalysis for CO Oxidation , 2009 .

[108]  K. A. El-Nour,et al.  Synthesis and applications of silver nanoparticles , 2010 .

[109]  A. Ingle,et al.  Mycosynthesis of Silver Nanoparticles Using the Fungus Fusarium acuminatum and its Activity Against Some Human Pathogenic Bacteria , 2008 .

[110]  Shiv Shankar,et al.  Bioreduction of chloroaurate ions by geranium leaves and its endophytic fungus yields gold nanoparticles of different shapes , 2003 .

[111]  C. Mirkin,et al.  DNA-modified core-shell Ag/Au nanoparticles. , 2001, Journal of the American Chemical Society.

[112]  Marc D Porter,et al.  SERS as a bioassay platform: fundamentals, design, and applications. , 2008, Chemical Society reviews.