Invertible Polynomial Representation for Private Set Operations

[1]  이형태 Polynomial Factorization and Its Applications , 2013 .

[2]  Marina Blanton,et al.  Private and oblivious set and multiset operations , 2012, ASIACCS '12.

[3]  Jonathan Katz,et al.  Constant-Round Multi-party Private Set Union Using Reversed Laurent Series , 2012, Public Key Cryptography.

[4]  Jung Hee Cheon,et al.  Constant-Round Privacy Preserving Multiset Union , 2013, IACR Cryptol. ePrint Arch..

[5]  Emiliano De Cristofaro,et al.  Linear-Complexity Private Set Intersection Protocols Secure in Malicious Model , 2010, ASIACRYPT.

[6]  Emiliano De Cristofaro,et al.  Practical Private Set Intersection Protocols with Linear Complexity , 2010, Financial Cryptography.

[7]  Hong Shen,et al.  Efficient and secure protocols for privacy-preserving set operations , 2009, TSEC.

[8]  Xiaomin Liu,et al.  Efficient Oblivious Pseudorandom Function with Applications to Adaptive OT and Secure Computation of Set Intersection , 2009, TCC.

[9]  Christopher Umans,et al.  Fast polynomial factorization and modular composition in small characteristic , 2008, STOC.

[10]  Dongvu Tonien,et al.  Birthday Paradox for Multi-Collisions , 2008, IEICE Trans. Fundam. Electron. Commun. Comput. Sci..

[11]  Keith B. Frikken Privacy-Preserving Set Union , 2007, ACNS.

[12]  V. K. Leont'ev Roots of random polynomials over a finite field , 2006 .

[13]  Dawn Xiaodong Song,et al.  Privacy-Preserving Set Operations , 2005, CRYPTO.

[14]  Victor Shoup,et al.  A computational introduction to number theory and algebra , 2005 .

[15]  Rafail Ostrovsky,et al.  Round-Optimal Secure Two-Party Computation , 2004, CRYPTO.

[16]  Benny Pinkas,et al.  Efficient Private Matching and Set Intersection , 2004, EUROCRYPT.

[17]  Ke Yang,et al.  On Simulation-Sound Trapdoor Commitments , 2004, EUROCRYPT.

[18]  Jan Camenisch,et al.  Practical Verifiable Encryption and Decryption of Discrete Logarithms , 2003, CRYPTO.

[19]  R. Gregory Taylor,et al.  Modern computer algebra , 2002, SIGA.

[20]  Kazue Sako,et al.  An Efficient Scheme for Proving a Shuffle , 2001, CRYPTO.

[21]  Fabian Kuhn,et al.  Random Walks Revisited: Extensions of Pollard's Rho Algorithm for Computing Multiple Discrete Logarithms , 2001, Selected Areas in Cryptography.

[22]  Oded Goldreich,et al.  Foundations of Cryptography: Volume 1, Basic Tools , 2001 .

[23]  Ivan Damgård,et al.  Multiparty Computation from Threshold Homomorphic Encryption , 2000, EUROCRYPT.

[24]  Victor Shoup,et al.  Practical Threshold Signatures , 2000, EUROCRYPT.

[25]  Jacques Stern,et al.  Sharing Decryption in the Context of Voting or Lotteries , 2000, Financial Cryptography.

[26]  Pascal Paillier,et al.  Public-Key Cryptosystems Based on Composite Degree Residuosity Classes , 1999, EUROCRYPT.

[27]  Jacques Stern,et al.  A new public key cryptosystem based on higher residues , 1998, CCS '98.

[28]  Tatsuaki Okamoto,et al.  A New Public-Key Cryptosystem as Secure as Factoring , 1998, EUROCRYPT.

[29]  J. Camenisch,et al.  Proof systems for general statements about discrete logarithms , 1997 .

[30]  Adi Shamir On the generation of multivariate polynomials which are hard to factor , 1993, STOC '93.

[31]  Avi Wigderson,et al.  Completeness theorems for non-cryptographic fault-tolerant distributed computation , 1988, STOC '88.

[32]  Adi Shamir,et al.  How to share a secret , 1979, CACM.