${L_{1/2}}$ Norm and Spatial Continuity Regularized Low-Rank Approximation for Moving Object Detection in Dynamic Background

Low-rank modeling-based moving object detection approaches proposed so far use fixed <inline-formula> <tex-math notation="LaTeX">${{\boldsymbol{l}}_1}$</tex-math></inline-formula>-norm penalty to capture the sparse nature of foreground in video, and thus, hardly adapt readily to the statistical variability of underlying foreground pixels in dynamic background. Additionally, they ignore the spatial continuity prior among the neighbor foreground pixels. Consequently, they cannot offer a satisfactory performance in practical dynamic background. In this letter, we present a unified regularization framework, namely <inline-formula><tex-math notation="LaTeX">${{\boldsymbol{l}}_{1/2}}$ </tex-math></inline-formula>-norm and spatial continuity regularized low-rank approximation (SCLR-<inline-formula> <tex-math notation="LaTeX">${{\boldsymbol{l}}_{1/2}}$</tex-math></inline-formula>), to solve this problem. First, in order to promote accuracy, we introduce an <inline-formula><tex-math notation="LaTeX">${{\boldsymbol{l}}_{1/2}}$ </tex-math></inline-formula> constraint into the framework. Second, to guarantee the continuity among the neighbor foreground pixels, we introduce a spatial continuity regularization term, motivated by total variation. Finally, we generalize our framework to the <inline-formula><tex-math notation="LaTeX">${{\boldsymbol{l}}_{\boldsymbol{q}}}$ </tex-math></inline-formula>-norm penalized case (SCLR-<inline-formula><tex-math notation="LaTeX"> ${{\boldsymbol{l}}_{\boldsymbol{q}}}$</tex-math></inline-formula>). By adjusting the shrinkage parameter <inline-formula><tex-math notation="LaTeX">${\boldsymbol{q}}$</tex-math></inline-formula>, the framework gets better flexibility to choose a reasonable sparse domain. To deal with the present constrained minimization problem, the augmented Lagrange multiplier method is employed and extended with the help of the alternating direction minimizing strategy. Experimental results show that the proposed method outperforms some state-of-the-art algorithms especially for the cases with dynamic backgrounds.

[1]  G. Sapiro,et al.  A collaborative framework for 3D alignment and classification of heterogeneous subvolumes in cryo-electron tomography. , 2013, Journal of structural biology.

[2]  Guoying Zhao,et al.  Background Subtraction Based on Low-Rank and Structured Sparse Decomposition , 2015, IEEE Transactions on Image Processing.

[3]  Wang Yao,et al.  an Experimental Study Based on Phase Diagram , 2012 .

[4]  Marc Teboulle,et al.  Fast Gradient-Based Algorithms for Constrained Total Variation Image Denoising and Deblurring Problems , 2009, IEEE Transactions on Image Processing.

[5]  Qingquan Li,et al.  Spectral–Spatial Hyperspectral Image Classification Using $\ell_{1/2}$ Regularized Low-Rank Representation and Sparse Representation-Based Graph Cuts , 2015, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[6]  Xiaochun Cao,et al.  Total Variation Regularized RPCA for Irregularly Moving Object Detection Under Dynamic Background , 2016, IEEE Transactions on Cybernetics.

[7]  Zongben Xu Data Modeling: Visual Psychology Approach and L1/2 Regularization Theory , 2011 .

[8]  Zongben Xu,et al.  $L_{1/2}$ Regularization: A Thresholding Representation Theory and a Fast Solver , 2012, IEEE Transactions on Neural Networks and Learning Systems.

[9]  Xiaodong Li,et al.  Dense error correction for low-rank matrices via Principal Component Pursuit , 2010, 2010 IEEE International Symposium on Information Theory.

[10]  Chun Qi,et al.  A Unified Regularization Framework for Virtual Frontal Face Image Synthesis , 2015, IEEE Signal Processing Letters.

[11]  Xiaochun Cao,et al.  Motion saliency detection using low-rank and sparse decomposition , 2012, 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[12]  Xin Liu,et al.  Background subtraction based on low-rank and structured sparse decomposition. , 2015, IEEE transactions on image processing : a publication of the IEEE Signal Processing Society.

[13]  Soon Ki Jung,et al.  Decomposition into Low-rank plus Additive Matrices for Background/Foreground Separation: A Review for a Comparative Evaluation with a Large-Scale Dataset , 2015, Comput. Sci. Rev..

[14]  Thierry Bouwmans,et al.  Foreground detection via robust low rank matrix factorization including spatial constraint with Iterative reweighted regression , 2012, Proceedings of the 21st International Conference on Pattern Recognition (ICPR2012).

[15]  Thierry Chateau,et al.  A Benchmark Dataset for Outdoor Foreground/Background Extraction , 2012, ACCV Workshops.

[16]  Zongben Xu,et al.  Representative of L1/2 Regularization among Lq (0 < q ≤ 1) Regularizations: an Experimental Study Based on Phase Diagram , 2012 .

[17]  Marc Van Droogenbroeck,et al.  ViBe: A Universal Background Subtraction Algorithm for Video Sequences , 2011, IEEE Transactions on Image Processing.

[18]  Thierry Bouwmans,et al.  Foreground detection based on low-rank and block-sparse matrix decomposition , 2012, 2012 19th IEEE International Conference on Image Processing.

[19]  John Wright,et al.  RASL: Robust Alignment by Sparse and Low-Rank Decomposition for Linearly Correlated Images , 2012, IEEE Trans. Pattern Anal. Mach. Intell..

[20]  Loong Fah Cheong,et al.  Block-Sparse RPCA for Consistent Foreground Detection , 2012, ECCV.

[21]  Lawrence Carin,et al.  Bayesian Robust Principal Component Analysis , 2011, IEEE Transactions on Image Processing.

[22]  Bertrand Vachon,et al.  Statistical Background Modeling for Foreground Detection: A Survey , 2010 .

[23]  Nikos Paragios,et al.  Motion-based background subtraction using adaptive kernel density estimation , 2004, CVPR 2004.

[24]  Xiaowei Zhou,et al.  Moving Object Detection by Detecting Contiguous Outliers in the Low-Rank Representation , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[25]  ANTONIN CHAMBOLLE,et al.  An Algorithm for Total Variation Minimization and Applications , 2004, Journal of Mathematical Imaging and Vision.

[26]  Jieping Ye,et al.  Efficient L1/Lq Norm Regularization , 2010, ArXiv.

[27]  Yong Yu,et al.  Robust Recovery of Subspace Structures by Low-Rank Representation , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[28]  Zoran Zivkovic,et al.  Improved adaptive Gaussian mixture model for background subtraction , 2004, Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004..

[29]  Adrian Hilton,et al.  A survey of advances in vision-based human motion capture and analysis , 2006, Comput. Vis. Image Underst..

[30]  Wang Yao,et al.  L 1/2 regularization , 2010 .

[31]  Constantine Caramanis,et al.  Robust PCA via Outlier Pursuit , 2010, IEEE Transactions on Information Theory.

[32]  Stephen J. Wright,et al.  Sparse Reconstruction by Separable Approximation , 2008, IEEE Transactions on Signal Processing.

[33]  Guillermo Sapiro,et al.  LOw-rank data modeling via the minimum description length principle , 2011, 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[34]  D. W. F. van Krevelen,et al.  A Survey of Augmented Reality Technologies, Applications and Limitations , 2010, Int. J. Virtual Real..

[35]  Zongben Xu,et al.  Fast image deconvolution using closed-form thresholding formulas of regularization , 2013, J. Vis. Commun. Image Represent..

[36]  Jun Liu,et al.  Efficient `1=`q Norm Regularization , 2010 .

[37]  Jun Liu,et al.  Efficient Euclidean projections in linear time , 2009, ICML '09.

[38]  Larry S. Davis,et al.  Real-time foreground-background segmentation using codebook model , 2005, Real Time Imaging.

[39]  Ronald Poppe,et al.  A survey on vision-based human action recognition , 2010, Image Vis. Comput..

[40]  Yi Ma,et al.  Robust principal component analysis? , 2009, JACM.

[41]  El-hadi Zahzah,et al.  Robust Principal Component Analysis Based on Low-Rank and Block-Sparse Matrix Decomposition , 2016 .

[42]  W. Eric L. Grimson,et al.  Adaptive background mixture models for real-time tracking , 1999, Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149).

[43]  Robert Tibshirani,et al.  The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd Edition , 2001, Springer Series in Statistics.

[44]  Jingdong Wang,et al.  A Probabilistic Approach to Robust Matrix Factorization , 2012, ECCV.

[45]  Nuno Vasconcelos,et al.  Spatiotemporal Saliency in Dynamic Scenes , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[46]  Yi Ma,et al.  The Augmented Lagrange Multiplier Method for Exact Recovery of Corrupted Low-Rank Matrices , 2010, Journal of structural biology.

[47]  Zongben Xu,et al.  Robust sparse and low-rank matrix decomposition based on S 1/2 modeling , 2013 .

[48]  Fatih Murat Porikli,et al.  Changedetection.net: A new change detection benchmark dataset , 2012, 2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops.

[49]  Andrew Blake,et al.  A Probabilistic Background Model for Tracking , 2000, ECCV.

[50]  Zongben Xu,et al.  L1/2 regularization , 2010, Science China Information Sciences.