Clustering of Heterogeneously Typed Data with Soft Computing
暂无分享,去创建一个
Ángel Fernando Kuri Morales | Daniel Trejo-Baños | Luis Enrique Cortes-Berrueco | Daniel Trejo-Baños | L. E. Cortes-Berrueco
[1] A. Agresti. Categorical data analysis , 1993 .
[2] Feller William,et al. An Introduction To Probability Theory And Its Applications , 1950 .
[3] Jimmy Johansson,et al. Interactive Quantification of Categorical Variables in Mixed Data Sets , 2008, 2008 12th International Conference Information Visualisation.
[4] Vipin Kumar,et al. A Framework for Exploring Categorical Data , 2009, SDM.
[5] Sudipto Guha,et al. ROCK: a robust clustering algorithm for categorical attributes , 1999, Proceedings 15th International Conference on Data Engineering (Cat. No.99CB36337).
[6] R. Suganya,et al. Data Mining Concepts and Techniques , 2010 .
[7] Michalis Vazirgiannis,et al. On Clustering Validation Techniques , 2001, Journal of Intelligent Information Systems.
[8] Jon M. Kleinberg,et al. Clustering categorical data: an approach based on dynamical systems , 2000, The VLDB Journal.
[9] Chia-Hui Chang,et al. Categorical data visualization and clustering using subjective factors , 2005, Data Knowl. Eng..
[10] Jiawei Han,et al. Data Mining: Concepts and Techniques , 2000 .
[11] Chung-Chian Hsu,et al. An integrated framework for visualized and exploratory pattern discovery in mixed data , 2006, IEEE Transactions on Knowledge and Data Engineering.
[12] Jeong-Hoon Lee,et al. Clustering with Domain Value Dissimilarity for Categorical Data , 2009, ICDM.
[13] Deniz Erdoğmuş,et al. Clustering using Renyi's entropy , 2003, Proceedings of the International Joint Conference on Neural Networks, 2003..
[14] Petra Perner,et al. Advances in Data Mining , 2002, Lecture Notes in Computer Science.
[15] Yi Li,et al. COOLCAT: an entropy-based algorithm for categorical clustering , 2002, CIKM '02.
[16] Jinyuan You,et al. CLOPE: a fast and effective clustering algorithm for transactional data , 2002, KDD.
[17] Eugenio Cesario,et al. Top-Down Parameter-Free Clustering of High-Dimensional Categorical Data , 2007, IEEE Transactions on Knowledge and Data Engineering.
[18] Joshua Zhexue Huang,et al. Extensions to the k-Means Algorithm for Clustering Large Data Sets with Categorical Values , 1998, Data Mining and Knowledge Discovery.
[19] Ke Wang,et al. Clustering transactions using large items , 1999, CIKM '99.
[20] Jean-Paul Chilès,et al. Wiley Series in Probability and Statistics , 2012 .
[21] Simon Haykin,et al. Neural Networks: A Comprehensive Foundation , 1998 .
[22] Teuvo Kohonen,et al. Self-Organizing Maps , 2010 .
[23] Naren Ramakrishnan,et al. Compression, clustering, and pattern discovery in very high-dimensional discrete-attribute data sets , 2005, IEEE Transactions on Knowledge and Data Engineering.
[24] Sang Joon Kim,et al. A Mathematical Theory of Communication , 2006 .
[25] Seungjin Choi,et al. Minimum entropy, k-means, spectral clustering , 2004, 2004 IEEE International Joint Conference on Neural Networks (IEEE Cat. No.04CH37541).
[26] Alan Agresti,et al. Categorical Data Analysis , 1991, International Encyclopedia of Statistical Science.
[27] James Bailey,et al. Information theoretic measures for clusterings comparison: is a correction for chance necessary? , 2009, ICML '09.
[28] Keke Chen,et al. Efficiently clustering transactional data with weighted coverage density , 2006, CIKM '06.
[29] M. V. Velzen,et al. Self-organizing maps , 2007 .
[30] Vipin Kumar,et al. Similarity Measures for Categorical Data: A Comparative Evaluation , 2008, SDM.
[31] Johannes Gehrke,et al. CACTUS—clustering categorical data using summaries , 1999, KDD '99.