Effective properties of particle reinforced polymeric mould material towards reducing cooling time in soft tooling process

Cooling time in soft tooling process using conventional mold materials is normally high. Although increase of effective thermal conductivity of mold material by inclusion of high thermally conductive fillers reduces the cooling time, it affects other properties (namely, stiffness of mold box and flow ability of melt mold material), which play important roles in soft tooling process. Therefore, to apply composite polymer in soft tooling process as mold material simultaneous studies of these properties are important. In this work, extensive experimental studies are made on the effective thermal conductivity, modulus of elasticity and viscosity of composite polymeric mold materials namely Polyurethane and RTV (Room Temperature Vulcanizing)-2 silicone rubber, with aluminum and graphite particle reinforcements. To find suitable models of the effective properties of composite mold materials, which are required to decide the optimum amount of filler content before actual application, attempts are made to fit the experimental results using various models reported in the literature. Finally, different aspects in reducing cooling time in soft tooling process and further activities are reported. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012

[1]  D. Sundstrom,et al.  Thermal Conductivity of Reinforced Plastics , 1970 .

[2]  S. Gustafsson Transient plane source techniques for thermal conductivity and thermal diffusivity measurements of solid materials , 1991 .

[3]  Maria Isabel Felisberti,et al.  Thermal conductivity of PET/(LDPE/AI) composites determined by MDSC , 2004 .

[4]  Muhammad Ishaq,et al.  The effect of filler concentration on the electrical, thermal, and mechanical properties of carbon particle and carbon fiber-reinforced poly(styrene-co-acrylonitrile) composites , 2007 .

[5]  M. Mooney,et al.  The viscosity of a concentrated suspension of spherical particles , 1951 .

[6]  Shengyu Feng,et al.  Thermal conductivity of silicone rubber filled with ZnO , 2007 .

[7]  D. Chung,et al.  Thermally conducting aluminum nitride polymer-matrix composites , 2001 .

[8]  R. Mclaughlin A study of the differential scheme for composite materials , 1977 .

[9]  H. Ishida,et al.  Very high thermal conductivity obtained by boron nitride-filled polybenzoxazine , 1998 .

[10]  Y. Agari,et al.  Estimation on thermal conductivities of filled polymers , 1986 .

[11]  Jae Ik Lee,et al.  Enhanced thermal conductivity of polymer composites filled with hybrid filler , 2006 .

[12]  D. A. G. Bruggeman Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen , 1935 .

[13]  J. Philip,et al.  Thermal properties of polytetrafluoroethylene/Sr2Ce2Ti5O16 polymer/ceramic composites , 2008 .

[14]  Y. Benveniste,et al.  A new approach to the application of Mori-Tanaka's theory in composite materials , 1987 .

[15]  Thomas J. Dougherty,et al.  A Mechanism for Non‐Newtonian Flow in Suspensions of Rigid Spheres , 1959 .

[16]  T. T. Wu On the Parametrization of the Elastic Moduli of Two-Phase Materials , 1965 .

[17]  E. Kröner Berechnung der elastischen Konstanten des Vielkristalls aus den Konstanten des Einkristalls , 1958 .

[18]  Richa Agrawal,et al.  Effective thermal conductivity of three‐phase styrene butadiene composites , 2000 .

[19]  A. Shojaei,et al.  On the viscosity of composite suspensions of aluminum and ammonium perchlorate particles dispersed in hydroxyl terminated polybutadiene--New empirical model. , 2006, Journal of colloid and interface science.

[20]  Jason M. Keith,et al.  Thermal conductivity models for carbon/liquid crystal polymer composites , 2007 .

[21]  Ching-Ping Wong,et al.  Thermal conductivity, elastic modulus, and coefficient of thermal expansion of polymer composites filled with ceramic particles for electronic packaging , 1999 .

[22]  K. S. Ravichandran,et al.  Elastic Properties of Two‐Phase Composites , 1994 .

[23]  Chang‐Ming Ye,et al.  Thermal conductivity of high density polyethylene filled with graphite , 2006 .

[24]  S. Gustafsson,et al.  THERMAL CONDUCTIVITY, THERMAL DIFFUSIVITY, AND SPECIFIC HEAT OF THIN SAMPLES FROM TRANSIENT MEASUREMENTS WITH HOT DISK SENSORS , 1994 .

[25]  Gao Jun,et al.  Mechanical and rheological properties of HDPE/graphite composite with enhanced thermal conductivity , 2001 .

[26]  Roland Keunings,et al.  Prediction of thermo-mechanical properties for compression moulded composites , 1998 .

[27]  J. C. H. Affdl,et al.  The Halpin-Tsai Equations: A Review , 1976 .

[28]  Howard A. Barnes,et al.  Measuring the viscosity of large-particle (and flocculated) suspensions — a note on the necessary gap size of rotational viscometers , 2000 .

[29]  I. Tavman,et al.  Thermal and mechanical properties of copper powder filled poly (ethylene) composites , 1997 .

[30]  P. E. Pierce,et al.  Application of ree-eyring generalized flow theory to suspensions of spherical particles , 1956 .

[31]  Xuehong Lu,et al.  Thermal conductivity of boron nitride‐filled thermoplastics: Effect of filler characteristics and composite processing conditions , 2005 .

[32]  J. S. Chong,et al.  Rheology of concentrated suspensions , 1971 .

[33]  W. Voigt Ueber die Beziehung zwischen den beiden Elasticitätsconstanten isotroper Körper , 1889 .

[34]  S. Gustafsson,et al.  Parameter estimations for measurements of thermal transport properties with the hot disk thermal constants analyzer , 2000 .

[35]  Andrzej Rosochowski,et al.  Rapid tooling: the state of the art , 2000 .

[36]  S. Shtrikman,et al.  A variational approach to the theory of the elastic behaviour of multiphase materials , 1963 .

[37]  Xiao Hu,et al.  Thermal conductivity of polystyrene–aluminum nitride composite , 2002 .

[38]  Salvatore Torquato,et al.  Effective electrical conductivity of two‐phase disordered composite media , 1985 .

[39]  J. Halpin Stiffness and Expansion Estimates for Oriented Short Fiber Composites , 1969 .

[40]  Daniela RUSU,et al.  Mechanical and thermal properties of zinc powder filled high density polyethylene composites , 2001 .

[41]  M. Razzaq,et al.  Thermomechanical studies of aluminum nitride filled shape memory polymer composites , 2007 .

[42]  L. Walpole On bounds for the overall elastic moduli of inhomogeneous systems—I , 1966 .

[43]  P. Pissis,et al.  Electrical and thermal conductivity of polymers filled with metal powders , 2002 .

[44]  Yi He,et al.  Rapid thermal conductivity measurement with a hot disk sensor: Part 1. Theoretical considerations , 2005 .

[45]  Takeo Ozawa,et al.  Thermal conductivity and heat capacity of ABS resin composites , 1997 .

[46]  Neri Alves,et al.  Study of the thermomechanical and electrical properties of conducting composites containing natural rubber and carbon black , 2007 .

[47]  Y. Agari,et al.  Thermal conductivity of polymer filled with carbon materials: Effect of conductive particle chains on thermal conductivity , 1985 .

[48]  H. Liem,et al.  Enhanced thermal conductivity of boron nitride epoxy‐matrix composite through multi‐modal particle size mixing , 2007 .

[49]  Jason M. Keith,et al.  Measuring thermal conductivities of anisotropic synthetic graphite-liquid crystal polymer composites , 2006 .

[50]  Torgrim Log,et al.  Transient plane source (TPS) technique for measuring thermal transport properties of building materials , 1995 .

[51]  B. Weidenfeller,et al.  Thermal conductivity, thermal diffusivity, and specific heat capacity of particle filled polypropylene , 2004 .

[52]  S. Cheng,et al.  The prediction of the thermal conductivity of two and three phase solid heterogeneous mixtures , 1969 .

[53]  Li Wang,et al.  Effective thermal conductivity behavior of filled vulcanized perfluoromethyl vinyl ether rubber , 2008 .

[54]  Siby Varghese,et al.  Aluminum powder filled nitrile rubber composites , 2004 .

[55]  Laurent Ibos,et al.  Thermophysical properties of polypropylene/aluminum composites , 2004 .

[56]  Lawrence E. Nielsen,et al.  Dynamic mechanical properties of particulate‐filled composites , 1970 .