High-Performance AlGaN/GaN/Si Power MOSHEMTs With ZrO2 Gate Dielectric

We report on the power performance of GaN-on-Si metal–oxide–semiconductor high electron mobility transistors (MOSHEMTs) with a high-<inline-formula> <tex-math notation="LaTeX">${k}$ </tex-math></inline-formula> ZrO<sub>2</sub> gate dielectric formed by atomic layer deposition. As a result of the high-quality ZrO<sub>2</sub> and ZrO<sub>2</sub>/AlGaN interface, the MOSHEMTs demonstrate an excellent ON/OFF current ratio of <inline-formula> <tex-math notation="LaTeX">$5 \times 10^{10}$ </tex-math></inline-formula>, a steep subthreshold slope of 66 mV/dec, a small hysteresis of ~0.05 V, and a high breakdown voltage of 1084 V at <inline-formula> <tex-math notation="LaTeX">$1~\mu \text{A}$ </tex-math></inline-formula>/mm. Effective suppression of current collapse with a dynamic-to-static ON-resistance ratio of 1.78 at a drain bias of 600 V is also achieved in the device. Benefiting from the highly uniform gate stack, large-area devices with a gate width of 20 mm were also demonstrated using the ZrO<sub>2</sub> gate dielectric, exhibiting a maximum output current of 7.4 A, a low ON-resistance of <inline-formula> <tex-math notation="LaTeX">$0.66~\Omega $ </tex-math></inline-formula>, and a high breakdown voltage of 650 V at an OFF-state drain current of <inline-formula> <tex-math notation="LaTeX">$1~\mu \text{A}$ </tex-math></inline-formula>/mm.

[1]  David I. Shahin,et al.  Enhancement mode AlGaN/GaN MOS high-electron-mobility transistors with ZrO2 gate dielectric deposited by atomic layer deposition , 2016 .

[2]  G. Ng,et al.  Band alignment between GaN and ZrO2 formed by atomic layer deposition , 2014 .

[3]  D. Barlage,et al.  ZrO2 on GaN metal oxide semiconductor capacitors via plasma assisted atomic layer deposition , 2013 .

[4]  Off‐state drain leakage reduction by post metallization annealing for Al2O3/GaN/AlGaN/GaN MOSHEMTs on Si , 2016 .

[5]  AlGaN/GaN Metal–Oxide–Semiconductor High-Electron-Mobility Transistors with a High Breakdown Voltage of 1400 V and a Complementary Metal–Oxide–Semiconductor Compatible Gold-Free Process , 2013 .

[6]  Tamotsu Hashizume,et al.  Insulated gate and surface passivation structures for GaN-based power transistors , 2016 .

[7]  Xing Lu,et al.  Investigation of In Situ SiN as Gate Dielectric and Surface Passivation for GaN MISHEMTs , 2017, IEEE Transactions on Electron Devices.

[8]  E. Bertagnolli,et al.  Technology and Performance of InAlN/AlN/GaN HEMTs With Gate Insulation and Current Collapse Suppression Using Zr$\hbox{O}_{\bm 2}$ or Hf $\hbox{O}_{\bm 2}$ , 2008, IEEE Transactions on Electron Devices.

[9]  Roy G. Gordon,et al.  Surface morphology and crystallinity control in the atomic layer deposition (ALD) of hafnium and zirconium oxide thin films , 2003 .

[10]  D. Ueda,et al.  GaN on Si Technologies for Power Switching Devices , 2013, IEEE Transactions on Electron Devices.

[11]  D. Lincot,et al.  Synthesis of ZrO2 thin films by atomic layer deposition: growth kinetics, structural and electrical properties , 2002 .

[12]  A. Kersch,et al.  The effect of dopants on the dielectric constant of HfO2 and ZrO2 from first principles , 2008 .

[13]  Gang Ye,et al.  Atomic layer deposition of ZrO2 as gate dielectrics for AlGaN/GaN metal-insulator-semiconductor high electron mobility transistors on silicon , 2013 .

[14]  S. Decoutere,et al.  CMOS Process-Compatible High-Power Low-Leakage AlGaN/GaN MISHEMT on Silicon , 2012, IEEE Electron Device Letters.

[15]  T. Tseng,et al.  Growth, dielectric properties, and memory device applications of ZrO2 thin films , 2013 .