Mesh Draping: Parametrization‐Free Neural Mesh Transfer

Despite recent advances in geometric modeling, 3D mesh modeling still involves a considerable amount of manual labor by experts. In this paper, we introduce Mesh Draping: a neural method for transferring existing mesh structure from one shape to another. The method drapes the source mesh over the target geometry and at the same time seeks to preserve the carefully designed characteristics of the source mesh. At its core, our method deforms the source mesh using progressive positional encoding. We show that by leveraging gradually increasing frequencies to guide the neural optimization, we are able to achieve stable and high quality mesh transfer. Our approach is simple and requires little user guidance, compared to contemporary surface mapping techniques which rely on parametrization or careful manual tuning. Most importantly, Mesh Draping is a parameterization-free method, and thus applicable to a variety of target shape representations, including point clouds, polygon soups, and non-manifold meshes. We demonstrate that the transferred meshing remains faithful to the source mesh design characteristics, and at the same time fits the target geometry well.

[1]  Kenshi Takayama,et al.  Data-driven interactive quadrangulation , 2015, ACM Trans. Graph..

[2]  Olga Sorkine-Hornung,et al.  Instant field-aligned meshes , 2015, ACM Trans. Graph..

[3]  Alexander M. Bronstein,et al.  Deep Functional Maps: Structured Prediction for Dense Shape Correspondence , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[4]  Marcel Campen,et al.  Partitioning Surfaces Into Quadrilateral Patches: A Survey , 2017, Comput. Graph. Forum.

[5]  Radomír Mech,et al.  3DN: 3D Deformation Network , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[6]  Vladimir G. Kim,et al.  Neural subdivision , 2020, ACM Trans. Graph..

[7]  Alec Jacobson,et al.  Algorithms and Interfaces for Real-Time Deformation of 2D and 3D Shapes , 2013 .

[8]  Hujun Bao,et al.  Quadrangulation through morse-parameterization hybridization , 2018, ACM Trans. Graph..

[9]  Daniela Giorgi,et al.  SHape REtrieval Contest 2007: Watertight Models Track , 2007 .

[10]  Vladimir G. Kim,et al.  Blended intrinsic maps , 2011, ACM Trans. Graph..

[11]  Gérard G. Medioni,et al.  Object modeling by registration of multiple range images , 1991, Proceedings. 1991 IEEE International Conference on Robotics and Automation.

[12]  Marcel Campen,et al.  Interactively controlled quad remeshing of high resolution 3D models , 2016, ACM Trans. Graph..

[13]  L. Guibas,et al.  ShapeFlow: Learnable Deformations Among 3D Shapes , 2020, ArXiv.

[14]  Yaron Lipman,et al.  Orbifold Tutte embeddings , 2015, ACM Trans. Graph..

[15]  Pratul P. Srinivasan,et al.  NeRF , 2020, ECCV.

[16]  Gordon Wetzstein,et al.  Implicit Neural Representations with Periodic Activation Functions , 2020, NeurIPS.

[17]  Daniel Cohen-Or,et al.  SnapPaste: an interactive technique for easy mesh composition , 2006, The Visual Computer.

[18]  Yaron Lipman,et al.  Hyperbolic orbifold tutte embeddings , 2016, ACM Trans. Graph..

[19]  Leonidas J. Guibas,et al.  Computing and processing correspondences with functional maps , 2016, SIGGRAPH Courses.

[20]  Alla Sheffer,et al.  Cross-parameterization and compatible remeshing of 3D models , 2004, ACM Trans. Graph..

[21]  Andrea Tagliasacchi,et al.  Sparse Iterative Closest Point , 2013, Comput. Graph. Forum.

[22]  Marc Alexa,et al.  As-rigid-as-possible surface modeling , 2007, Symposium on Geometry Processing.

[23]  Pierre Alliez,et al.  Variance-minimizing transport plans for inter-surface mapping , 2017, ACM Trans. Graph..

[24]  Yoshua Bengio,et al.  On the Spectral Bias of Neural Networks , 2018, ICML.

[25]  Valerio Pascucci,et al.  Inspired quadrangulation , 2011, Comput. Aided Des..

[26]  Dan Raviv,et al.  Cyclic Functional Mapping: Self-supervised correspondence between non-isometric deformable shapes , 2019, ECCV.

[27]  Marcel Campen,et al.  Distortion-minimizing injective maps between surfaces , 2019, ACM Trans. Graph..

[28]  Ulrich Pinkall,et al.  Computing Discrete Minimal Surfaces and Their Conjugates , 1993, Exp. Math..

[29]  Gary K. L. Tam,et al.  Registration of 3D Point Clouds and Meshes: A Survey from Rigid to Nonrigid , 2013, IEEE Transactions on Visualization and Computer Graphics.

[30]  Olga Sorkine-Hornung,et al.  Template-Based 3D Model Fitting Using Dual-Domain Relaxation , 2011, IEEE Transactions on Visualization and Computer Graphics.

[31]  Keenan Crane,et al.  Möbius Registration , 2018, Comput. Graph. Forum.

[32]  Paul J. Besl,et al.  A Method for Registration of 3-D Shapes , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[33]  Daniel Cohen-Or,et al.  Point2Mesh , 2020, ACM Trans. Graph..

[34]  Joan Bruna,et al.  Deep Geometric Prior for Surface Reconstruction , 2018, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[35]  Jonathan T. Barron,et al.  Fourier Features Let Networks Learn High Frequency Functions in Low Dimensional Domains , 2020, NeurIPS.

[36]  Mark Meyer,et al.  Interactive geometry remeshing , 2002, SIGGRAPH.

[37]  Patrick Schmidt,et al.  Inter-surface maps via constant-curvature metrics , 2020, ACM Trans. Graph..

[38]  Roi Poranne,et al.  Seamless surface mappings , 2015, ACM Trans. Graph..

[39]  Michela Spagnuolo,et al.  Shape Analysis and Structuring , 2008 .

[40]  Leonidas J. Guibas,et al.  Non-Rigid Registration Under Isometric Deformations , 2008 .

[41]  Mirela Ben-Chen,et al.  Reversible Harmonic Maps between Discrete Surfaces , 2018, ACM Trans. Graph..

[42]  Shi-Min Hu,et al.  An incremental approach to feature aligned quad dominant remeshing , 2008, SPM '08.

[43]  Olga Sorkine-Hornung,et al.  Bounded biharmonic weights for real-time deformation , 2011, Commun. ACM.

[44]  Daniel Cohen-Or,et al.  Deformation‐Driven Shape Correspondence , 2008, Comput. Graph. Forum.

[45]  D. Bommes,et al.  Mixed-integer quadrangulation , 2009, ACM Trans. Graph..

[46]  Abhishek Sharma,et al.  Deep Geometric Functional Maps: Robust Feature Learning for Shape Correspondence , 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[47]  Ligang Liu,et al.  Volume-Enhanced Compatible Remeshing of 3D Models , 2019, IEEE Transactions on Visualization and Computer Graphics.

[48]  Vladimir G. Kim,et al.  Neural Cages for Detail-Preserving 3D Deformations , 2019, Computer Vision and Pattern Recognition.

[49]  Hao Li,et al.  Global Correspondence Optimization for Non‐Rigid Registration of Depth Scans , 2008, Comput. Graph. Forum.

[50]  Martin Rumpf,et al.  Elastic Correspondence between Triangle Meshes , 2019, Comput. Graph. Forum.

[51]  Marco Attene,et al.  Recent Advances in Remeshing of Surfaces , 2008, Shape Analysis and Structuring.