Neuronal avalanches and criticality: A dynamical model for homeostasis

The dynamics of microelectrode local field potentials from cortical slice cultures shows critical behavior. A desirable feature of criticality is that information transmission is optimal in this state. We explore a biologically plausible neural net model that can dynamically converge on criticality and that can return to criticality if perturbed away from it. Our model assumes the presence of a preferred target firing rate, with dynamical adjustments of internodal connection strengths to approach this firing rate. We suggest that mechanisms for maintaining firing rate homeostasis may also maintain a neural system at criticality.