Magnetoresistance of magnetite

The resistivity and magnetoresistance of a magnetite single crystal and Fe3 O4 films of various thicknesses were measured in the temperature range 70 K<T <300 K and in magnetic fields in the range -1 T µ0 H 1 T. The magnetoresistance depends on both current and magnetic field direction. The anisotropic magnetoresistance is determined as the difference of the magnetoresistances in longitudinal and transverse geometry. The data were analysed within a phenomenological model above the Verwey temperature. The anisotropic magnetoresistance for currents along [100] was found to show a sign change simultaneously with that of the crystalline anisotropy constant K 1 . Whereas the magnetoresistance of the single crystal saturates above the anisotropy field, the Fe3 O4 films show a significant high-field magnetoresistance depending linearly on the applied field. This behaviour was attributed to carrier transport across antiphase boundaries. A simple model was proposed that is in good qualitative agreement with the data. The single crystal shows a significant decrease of the Verwey transition in magnetic fields applied along [110]; this leads to a magnetoresistance of 70% in an external field of 1 T.

[1]  Gong,et al.  Grain-boundary effects on the magnetoresistance properties of perovskite manganite films. , 1996, Physical review. B, Condensed matter.

[2]  G. Gehring,et al.  Investigation of magnetite thin films produced by pulsed laser deposition , 1997 .

[3]  M. A. James,et al.  SUPERPARAMAGNETIC BEHAVIOR OF STRUCTURAL DOMAINS IN EPITAXIAL ULTRATHIN MAGNETITE FILMS , 1998 .

[4]  J. Feng,et al.  Magnetoelectric properties of magnetite thin films , 1975 .

[5]  Y. Watanabe,et al.  Contribution of the Fe2+ ion to the magnetic anisotropy constant in ferrites , 1978 .

[6]  M. Lorenz,et al.  Structural and magnetic properties of epitaxial magnetite thin films prepared by pulsed laser deposition , 1995 .

[7]  W. Döring Die Abhängigkeit des Widerstandes von Nickelkristallen von der Richtung der spontanen Magnetisierung , 1938 .

[8]  D. Kostopoulos Magnetoresistance of Magnetite , 1972, February 16.

[9]  J. Kübler,et al.  Calculated electronic band structure and magnetic moments of ferrites , 1992 .

[10]  J. Coey,et al.  Iron oxide thin films produced by laser ablation deposition , 1992 .

[11]  M. Blamire,et al.  Defect-induced spin disorder and magnetoresistance in single-crystal and polycrystal rare-earth manganite thin films , 1998, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[12]  R. D. Groot,et al.  Recent developments in half-metallic magnetism , 1986 .

[13]  C. Domenicali Magnetic and Electric Properties of Natural and Synthetic Single Crystals of Magnetite , 1950 .

[14]  M. Ziese Grain-boundary magnetoresistance in manganites: Spin-polarized inelastic tunneling through a spin-glass-like barrier , 1999 .

[15]  S. Ogale,et al.  POSITIVE GIANT MAGNETORESISTANCE IN A FE3O4/SRTIO3/LA0.7SR0.3MNO3 HETEROSTRUCTURE , 1998 .

[16]  F. Guinea,et al.  Surface electronic structure and magnetic properties of doped manganites , 1998, cond-mat/9811337.

[17]  D. Ihle,et al.  Small-polaron conduction and short-range order in Fe3O4 , 1986 .

[18]  D. Ihle,et al.  Small-polaron band versus hopping conduction in Fe3O4 , 1985 .

[19]  R. Gerber,et al.  Contribution of Fe2+, Mn3+ and Fe3+ ions to the magnetic anisotropy of MgxMn0.6Fe2.4-xO4 , 1970 .

[20]  Philip W. Anderson,et al.  Considerations on Double Exchange , 1955 .

[21]  W. O'reilly,et al.  Contribution of Fe2+ ions to the magnetocrystalline anisotropy constant K1 of Fe3-xTixO4 (0 , 1974 .

[22]  Shepherd,et al.  Heat capacity and entropy of nonstoichiometric magnetite Fe3(1- delta )O4: The thermodynamic nature of the Verwey transition. , 1991, Physical review. B, Condensed matter.

[23]  Spada,et al.  Anomalous moment and anisotropy behavior in Fe3O4 films. , 1996, Physical review. B, Condensed matter.

[24]  W. Qian,et al.  MAGNETORESISTANCE AND MAGNETIC PROPERTIES OF EPITAXIAL MAGNETITE THIN FILMS , 1997 .

[25]  Gridin Vv,et al.  Magnetoresistance extremum at the first-order Verwey transition in magnetite (Fe3O4). , 1996 .

[26]  J. Coey,et al.  AC susceptibility of a magnetite crystal , 1999 .

[27]  Lawrence G. Rubin,et al.  Low‐temperature thermometry in high magnetic fields. VI. Industrial‐grade Pt resistors above 66 K; Rh–Fe and Au–Mn resistors above 40 K , 1988 .

[28]  Hwang,et al.  Spin-Polarized Intergrain Tunneling in La2/3Sr1/3MnO3. , 1996, Physical review letters.

[29]  J. Chapman,et al.  Origin of the Anomalous Magnetic Behavior in Single Crystal Fe 3 O 4 Films , 1997 .

[30]  S. Cheong,et al.  Intergrain magnetoresistance via second-order tunneling in perovskite manganites , 1999 .

[31]  J. Coey,et al.  Magnetoresistance of magnetite , 1998 .

[32]  B. Calhoun MAGNETIC AND ELECTRIC PROPERTIES OF MAGNETITE AT LOW TEMPERATURES , 1954 .

[33]  Ramamoorthy Ramesh,et al.  Magnetotransport anisotropy effects in epitaxial magnetite (Fe 3 O 4 ) thin films , 1998 .

[34]  G. Xiao,et al.  Transport and magnetic properties of epitaxial and polycrystalline magnetite thin films , 1998 .

[35]  W. Mckinnon,et al.  Galvanomagnetic measurements in Fe3O4 , 1981 .

[36]  Vinayak P. Dravid,et al.  Fabrication and properties of heteroepitaxial magnetite (Fe3O4) tunnel junctions , 1998 .