Mismatch repair in Gram-positive bacteria.

DNA mismatch repair (MMR) is responsible for correcting errors formed during DNA replication. DNA polymerase errors include base mismatches and extra helical nucleotides referred to as insertion and deletion loops. In bacteria, MMR increases the fidelity of the chromosomal DNA replication pathway approximately 100-fold. MMR defects in bacteria reduce replication fidelity and have the potential to affect fitness. In mammals, MMR defects are characterized by an increase in mutation rate and by microsatellite instability. In this review, we discuss current advances in understanding how MMR functions in bacteria lacking the MutH and Dam methylase-dependent MMR pathway.

[1]  K. Skarstad,et al.  Replication fork movement and methylation govern SeqA binding to the Escherichia coli chromosome , 2012, Nucleic acids research.

[2]  B W Glickman,et al.  Escherichia coli mutator mutants deficient in methylation-instructed DNA mismatch correction. , 1980, Proceedings of the National Academy of Sciences of the United States of America.

[3]  A. Grossman,et al.  Beta clamp directs localization of mismatch repair in Bacillus subtilis. , 2008, Molecular cell.

[4]  J. Bujnicki,et al.  The PMS2 subunit of human MutLalpha contains a metal ion binding domain of the iron-dependent repressor protein family. , 2008, Journal of molecular biology.

[5]  Lyle A. Simmons,et al.  Mutations in the Bacillus subtilis β Clamp That Separate Its Roles in DNA Replication from Mismatch Repair , 2010, Journal of bacteriology.

[6]  Danielle L. Watt,et al.  Abundant ribonucleotide incorporation into DNA by yeast replicative polymerases , 2010, Proceedings of the National Academy of Sciences.

[7]  P. Modrich,et al.  A defined human system that supports bidirectional mismatch-provoked excision. , 2004, Molecular cell.

[8]  P. Modrich,et al.  Endonucleolytic Function of MutLα in Human Mismatch Repair , 2006, Cell.

[9]  M. Itaya,et al.  Identification of the genes encoding Mn2+-dependent RNase HII and Mg2+-dependent RNase HIII from Bacillus subtilis: classification of RNases H into three families. , 1999, Biochemistry.

[10]  J. Lebbink,et al.  Magnesium Coordination Controls the Molecular Switch Function of DNA Mismatch Repair Protein MutS* , 2010, The Journal of Biological Chemistry.

[11]  S. Biller,et al.  The Putative Hydrolase YycJ (WalJ) Affects the Coordination of Cell Division with DNA Replication in Bacillus subtilis and May Play a Conserved Role in Cell Wall Metabolism , 2010, Journal of bacteriology.

[12]  Mike O'Donnell,et al.  Saccharomyces cerevisiae MutLalpha is a mismatch repair endonuclease. , 2007, The Journal of biological chemistry.

[13]  J. Errington,et al.  The replicase sliding clamp dynamically accumulates behind progressing replication forks in Bacillus subtilis cells. , 2011, Molecular cell.

[14]  Guo-Min Li New insights and challenges in mismatch repair: getting over the chromatin hurdle. , 2014, DNA repair.

[15]  Virgil L. Woods,et al.  A conserved MutS homolog connector domain interface interacts with MutL homologs , 2009, Proceedings of the National Academy of Sciences.

[16]  Jeffrey H. Miller,et al.  The role of Bacillus anthracis RecD2 helicase in DNA mismatch repair. , 2011, DNA repair.

[17]  Marc L. Mendillo,et al.  Analysis of the Interaction between the Saccharomyces cerevisiae MSH2-MSH6 and MLH1-PMS1 Complexes with DNA Using a Reversible DNA End-blocking System* , 2005, Journal of Biological Chemistry.

[18]  J. L. Barra,et al.  Analysis of DNA structure and sequence requirements for Pseudomonas aeruginosa MutL endonuclease activity. , 2013, Journal of biochemistry.

[19]  P. Modrich,et al.  DNA mismatch correction in a defined system. , 1989, Science.

[20]  R. Kolodner,et al.  Reconstitution of long and short patch mismatch repair reactions using Saccharomyces cerevisiae proteins , 2013, Proceedings of the National Academy of Sciences.

[21]  P. Modrich,et al.  Mismatch-, MutS-, MutL-, and Helicase II-dependent Unwinding from the Single-strand Break of an Incised Heteroduplex* , 1998, The Journal of Biological Chemistry.

[22]  H. Rubin,et al.  Characterization of Nucleotide Pools as a Function of Physiological State in Escherichia coli , 2007, Journal of bacteriology.

[23]  J. Dunn,et al.  Identification of base mismatches recognized by the heteroduplex-DNA-repair system of Streptococcus pneumoniae , 1982, Cell.

[24]  C. Argaraña,et al.  Functional analysis of the interaction between the mismatch repair protein MutS and the replication processivity factor β clamp in Pseudomonas aeruginosa. , 2012, DNA repair.

[25]  Eric C Greene,et al.  Single-molecule imaging reveals target-search mechanisms during DNA mismatch repair , 2012, Proceedings of the National Academy of Sciences.

[26]  Martin Depken,et al.  Supplementary Information Supplementary Figures , 2022 .

[27]  E. Cox,et al.  MUTATOR GENE STUDIES IN ESCHEBZCHZA COLI: THE mutS GENE' , 2003 .

[28]  M. Hingorani,et al.  DnaN clamp zones provide a platform for spatiotemporal coupling of mismatch detection to DNA replication , 2013, Molecular microbiology.

[29]  N. Kleckner,et al.  E. coli oriC and the dnaA gene promoter are sequestered from dam methyltransferase following the passage of the chromosomal replication fork , 1990, Cell.

[30]  P. Modrich,et al.  The MutL ATPase Is Required for Mismatch Repair* , 2000, The Journal of Biological Chemistry.

[31]  J. Jiricny Replication errors: cha(lle)nging the genome , 1998, The EMBO journal.

[32]  Upendra K. Kar,et al.  Evidence that YycJ is a novel 5'-3' double-stranded DNA exonuclease acting in Bacillus anthracis mismatch repair. , 2013, DNA repair.

[33]  Martin A. M. Reijns,et al.  Ribonucleotides Misincorporated into DNA Act as Strand-Discrimination Signals in Eukaryotic Mismatch Repair , 2013, Molecular cell.

[34]  P. Friedhoff,et al.  Structure of the endonuclease domain of MutL: unlicensed to cut. , 2010, Molecular cell.

[35]  Jeffrey H. Miller,et al.  Deletion of dnaN1 generates a mutator phenotype in Bacillus anthracis. , 2008, DNA repair.

[36]  B. Alberts,et al.  Two types of replication proteins increase the rate at which T4 DNA polymerase traverses the helical regions in a single-stranded DNA template. , 1981, The Journal of biological chemistry.

[37]  A. Desai,et al.  Visualization of Eukaryotic DNA Mismatch Repair Reveals Distinct Recognition and Repair Intermediates , 2011, Cell.

[38]  M. Schofield,et al.  DNA mismatch repair: molecular mechanisms and biological function. , 2003, Annual review of microbiology.

[39]  S. Lovett,et al.  In vivo requirement for RecJ, ExoVII, ExoI, and ExoX in methyl-directed mismatch repair , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[40]  M. O’Donnell,et al.  Cost of rNTP/dNTP pool imbalance at the replication fork , 2013, Proceedings of the National Academy of Sciences.

[41]  J. Griffith,et al.  hMSH2-hMSH6 forms a hydrolysis-independent sliding clamp on mismatched DNA. , 1999, Molecular cell.

[42]  V. Nizet,et al.  Papillation in Bacillus anthracis colonies: a tool for finding new mutators , 2011, Molecular microbiology.

[43]  B. Dalrymple,et al.  A universal protein–protein interaction motif in the eubacterial DNA replication and repair systems , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[44]  B. Gilquin,et al.  Structure of the MutLα C-terminal domain reveals how Mlh1 contributes to Pms1 endonuclease site , 2013, Nature Structural &Molecular Biology.

[45]  P. Modrich,et al.  Endonucleolytic function of MutLalpha in human mismatch repair. , 2006, Cell.

[46]  H. P. Treffers,et al.  A Factor (or Mutator Gene) Influencing Mutation Rates in Escherichia Coli. , 1954, Proceedings of the National Academy of Sciences of the United States of America.

[47]  A. Grossman,et al.  Visualization of mismatch repair in bacterial cells. , 2001, Molecular cell.

[48]  J. Jiricny Postreplicative mismatch repair. , 2013, Cold Spring Harbor perspectives in biology.

[49]  S. Lacks,et al.  Heteroduplex deoxyribonucleic acid base mismatch repair in bacteria , 1986, Microbiological reviews.

[50]  J. Griffith,et al.  MutS mediates heteroduplex loop formation by a translocation mechanism , 1997, The EMBO journal.

[51]  Richard Fishel,et al.  The coordinated functions of the E. coli MutS and MutL proteins in mismatch repair. , 2003, Molecular cell.

[52]  P. Hsieh,et al.  Composite active site of an ABC ATPase: MutS uses ATP to verify mismatch recognition and authorize DNA repair. , 2001, Molecular cell.

[53]  T. Kunkel,et al.  Ribonucleotides are signals for mismatch repair of leading-strand replication errors. , 2013, Molecules and Cells.

[54]  S. Lovett,et al.  Redundant Exonuclease Involvement in Escherichia coli Methyl-directed Mismatch Repair* , 2001, The Journal of Biological Chemistry.

[55]  Lyle A. Simmons,et al.  DNA Repair and Genome Maintenance in Bacillus subtilis , 2012, Microbiology and Molecular Reviews.

[56]  R. Kolodner,et al.  New insights into the mechanism of DNA mismatch repair , 2015, Chromosoma.

[57]  J. Keck,et al.  RecD2 Helicase Limits Replication Fork Stress in Bacillus subtilis , 2014, Journal of bacteriology.

[58]  M. Pillon,et al.  The endonuclease domain of MutL interacts with the β sliding clamp. , 2011, DNA repair.

[59]  T. Kunkel,et al.  Evidence for Preferential Mismatch Repair of Lagging Strand DNA Replication Errors in Yeast , 2003, Current Biology.

[60]  P. Modrich,et al.  Escherichia coli mutS-encoded protein binds to mismatched DNA base pairs. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[61]  M. O’Donnell,et al.  The beta sliding clamp binds to multiple sites within MutL and MutS. , 2006, The Journal of biological chemistry.

[62]  Cyril Bouquet,et al.  ATP hydrolysis-dependent formation of a dynamic ternary nucleoprotein complex with MutS and MutL. , 1999, Nucleic acids research.

[63]  M. Sutton Coordinating DNA polymerase traffic during high and low fidelity synthesis. , 2010, Biochimica et biophysica acta.

[64]  M. Marinus,et al.  The great GATC: DNA methylation in E. coli. , 1989, Trends in genetics : TIG.

[65]  M. O’Donnell,et al.  The β Sliding Clamp Binds to Multiple Sites within MutL and MutS* , 2006, Journal of Biological Chemistry.

[66]  Peter Friedhoff,et al.  Chemical Trapping of the Dynamic MutS-MutL Complex Formed in DNA Mismatch Repair in Escherichia coli* , 2011, The Journal of Biological Chemistry.

[67]  Ronald R. Breaker,et al.  Kinetics of RNA Degradation by Specific Base Catalysis of Transesterification Involving the 2‘-Hydroxyl Group , 1999 .

[68]  P. Modrich,et al.  PCNA function in the activation and strand direction of MutLα endonuclease in mismatch repair , 2010, Proceedings of the National Academy of Sciences.

[69]  M. Pillon,et al.  Trapping and visualizing intermediate steps in the mismatch repair pathway in vivo , 2013, Molecular microbiology.

[70]  M. Marinus,et al.  The MutS C Terminus Is Essential for Mismatch Repair Activity In Vivo , 2005, Journal of bacteriology.

[71]  Haixu Tang,et al.  Rate and molecular spectrum of spontaneous mutations in the bacterium Escherichia coli as determined by whole-genome sequencing , 2012, Proceedings of the National Academy of Sciences.