The Category Theoretic Solution of Recursive Program Schemes
暂无分享,去创建一个
[1] Jirí Adámek,et al. Elgot Algebras: (Extended Abstract) , 2006, MFPS.
[2] Jirí Adámek. On a Description of Terminal Coalgebras and Iterative Theories , 2003, CMCS.
[3] A. R. D. Mathias,et al. NON‐WELL‐FOUNDED SETS (CSLI Lecture Notes 14) , 1991 .
[4] Stefan Milius. Completely iterative algebras and completely iterative monads , 2005, Inf. Comput..
[5] Jirí Adámek,et al. On the Greatest Fixed Point of a Set Functor , 1995, Theor. Comput. Sci..
[6] Jirí Adámek,et al. On tree coalgebras and coalgebra presentations , 2004, Theor. Comput. Sci..
[7] Z. Ésik,et al. Iteration Theories: The Equational Logic of Iterative Processes , 1993 .
[8] Christoph Lüth,et al. Dualising Initial Algebras , 2003, Math. Struct. Comput. Sci..
[9] Bruno Courcelle,et al. Fundamental Properties of Infinite Trees , 1983, Theor. Comput. Sci..
[10] Peter Aczel,et al. A Coalgebraic View of Infinite Trees and Iteration , 2001, CMCS.
[11] Michael Barr,et al. Terminal Coalgebras in Well-Founded Set Theory , 1993, Theor. Comput. Sci..
[12] Stefan Milius. On Iteratable Endofunctors , 2002, CTCS.
[13] Jirí Adámek,et al. Banach's Fixed-Point Theorem as a base for data-type equations , 1994, Appl. Categorical Struct..
[14] Maurice Nivat,et al. The metric space of infinite trees. Algebraic and topological properties , 1980, Fundam. Informaticae.
[15] J. Adámek,et al. Automata and Algebras in Categories , 1990 .
[16] Stephen L. Bloom,et al. All Solutions of a System of Recursion Equations in Infinite Trees and Other Contraction Theories , 1983, J. Comput. Syst. Sci..
[17] C. C. Elgot. Monadic Computation And Iterative Algebraic Theories , 1982 .
[18] James Worrell,et al. On the final sequence of a finitary set functor , 2005, Theor. Comput. Sci..
[19] D. Harrison,et al. Vicious Circles , 1995 .
[20] Christoph Lüth,et al. Solving Algebraic Equations Using Coalgebra , 2003, RAIRO Theor. Informatics Appl..
[21] Irène Guessarian,et al. Algebraic semantics , 1981, Lecture Notes in Computer Science.
[22] Peter Aczel,et al. Non-well-founded sets , 1988, CSLI lecture notes series.
[23] Jirí Adámek,et al. Free iterative theories: a coalgebraic view , 2003, Mathematical Structures in Computer Science.
[24] Stefan Milius,et al. Terminal coalgebras and free iterative theories , 2006, Inf. Comput..
[25] Peter Aczel,et al. Infinite trees and completely iterative theories: a coalgebraic view , 2003, Theor. Comput. Sci..
[26] Lawrence S. Moss. Uniform Functors on Sets , 2006, Essays Dedicated to Joseph A. Goguen.
[27] Michael F. Barnsley,et al. Fractals everywhere , 1988 .
[28] Stefan Milius,et al. On coalgebra based on classes , 2004, Theor. Comput. Sci..
[29] Jirí Adámek,et al. Iterative algebras at work , 2006, Mathematical Structures in Computer Science.
[30] Pierre America,et al. Solving Reflexive Domain Equations in a Category of Complete Metric Spaces , 1987, J. Comput. Syst. Sci..
[31] J. van Leeuwen,et al. Theoretical Computer Science , 2003, Lecture Notes in Computer Science.
[32] Stefan Milius,et al. The category-theoretic solution of recursive program schemes , 2006, Theor. Comput. Sci..
[33] Lawrence S. Moss. Parametric corecursion , 2001, Theor. Comput. Sci..
[34] Ralph Matthes,et al. Substitution in Non-wellfounded Syntax with Variable Binding , 2003, CMCS.
[35] Christoph Lüth,et al. Algebras, Coalgebras, Monads and Comonads , 2001, CMCS.
[36] C. C. Elgot,et al. On the algebraic structure of rooted trees , 1978 .
[37] J. Lambek. A fixpoint theorem for complete categories , 1968 .