A note On outlier sensitivity of Sliced Inverse Regression

Sliced Inverse Regression (SIR) is a promising technique for the purpose of dimension reduction. Several properties of this method have been examined already, but little attention has been paid to robustness aspects. In this article, we focus on the sensitivity of SIR to outliers and show in what sense and how severely SIR can be influenced by outliers in the data.

[1]  L. Ferré Determining the Dimension in Sliced Inverse Regression and Related Methods , 1998 .

[2]  A. Tsybakov,et al.  Sliced Inverse Regression for Dimension Reduction - Comment , 1991 .

[3]  J. Freidman,et al.  Multivariate adaptive regression splines , 1991 .

[4]  Simon J. Sheather,et al.  A comparison of procedures based on inverse regression , 1997 .

[5]  Raymond J. Carroll,et al.  Measurement Error Regression with Unknown Link: Dimension Reduction and Data Visualization , 1992 .

[6]  T. Kötter,et al.  Asymptotic results for sliced inverse regression , 1994 .

[7]  R. Cook,et al.  Principal Hessian Directions Revisited , 1998 .

[8]  Ana M. Pires,et al.  GENERALIZATION OF FISHER ’ S LINEAR DISCRIMINANT , .

[9]  E. Bura Dimension reduction via parametric inverse regression , 1997 .

[10]  Ker-Chau Li,et al.  On Principal Hessian Directions for Data Visualization and Dimension Reduction: Another Application of Stein's Lemma , 1992 .

[11]  K. Fang,et al.  Asymptotics for kernel estimate of sliced inverse regression , 1996 .

[12]  Tailen Hsing,et al.  Nearest neighbor inverse regression , 1999 .

[13]  R. Cook,et al.  Dimension Reduction in Binary Response Regression , 1999 .

[14]  A. Goldman An Introduction to Regression Graphics , 1995 .

[15]  James R. Schott,et al.  Determining the Dimensionality in Sliced Inverse Regression , 1994 .

[16]  David M. Rocke Robustness properties of S-estimators of multivariate location and shape in high dimension , 1996 .

[17]  R. Cook Graphics for regressions with a binary response , 1996 .

[18]  Ker-Chau Li Sliced inverse regression for dimension reduction (with discussion) , 1991 .

[19]  R. Cook On the Interpretation of Regression Plots , 1994 .

[20]  R. H. Moore,et al.  Regression Graphics: Ideas for Studying Regressions Through Graphics , 1998, Technometrics.

[21]  J. Friedman,et al.  Projection Pursuit Regression , 1981 .

[22]  Ker-Chau Li,et al.  Sliced Inverse Regression for Dimension Reduction , 1991 .

[23]  R. Cook,et al.  Theory & Methods: Special Invited Paper: Dimension Reduction and Visualization in Discriminant Analysis (with discussion) , 2001 .

[24]  R. Cook,et al.  Reweighting to Achieve Elliptically Contoured Covariates in Regression , 1994 .

[25]  Jérôme Saracco,et al.  Sliced inverse regression under linear constraints , 1999 .

[26]  Jane-Ling Wang,et al.  Dimension reduction for censored regression data , 1999 .

[27]  S. Weisberg,et al.  Comments on "Sliced inverse regression for dimension reduction" by K. C. Li , 1991 .

[28]  Jerome H. Friedman Multivariate adaptive regression splines (with discussion) , 1991 .

[29]  Jérôme Saracco,et al.  Sliced Inverse Regression (SIR): An Appraisal of Small Sample Alternatives to Slicing , 1996 .

[30]  Ursula Gather,et al.  The Masking Breakdown Point of Multivariate OutlierIdenti cation , 1997 .

[31]  Chun-Houh Chen,et al.  CAN SIR BE AS POPULAR AS MULTIPLE LINEAR REGRESSION , 2003 .

[32]  I. D. Hill,et al.  Applied Statistics Algorithms. , 1985 .

[33]  Ker-Chau Li,et al.  On almost Linearity of Low Dimensional Projections from High Dimensional Data , 1993 .

[34]  Ursula Gather,et al.  The Masking Breakdown Point of Multivariate Outlier Identification Rules , 1999 .

[35]  R. Cook,et al.  Identifying Regression Outliers and Mixtures Graphically , 2000 .

[36]  Jérôme Saracco,et al.  An asymptotic theory for sliced inverse regression , 1997 .

[37]  Dimension Choice for Sliced Inverse Regression Based on Ranks , .