The Arlequin method as a flexible engineering design tool

By superposing and gluing models, the Arlequin method offers an extended modelling framework for the design of engineering structures. This paper aims at developing the numerical aspects of the approach and at showing how it can be used with great flexibility and in a consistent manner to change locally a global mechanical model. The capabilities of the Arlequin method and the effectiveness of the implemented numerical tools are exemplified by 1-D, 2-D and 3-D numerical applications.

[1]  I. Babuska,et al.  The design and analysis of the Generalized Finite Element Method , 2000 .

[2]  H. Dhia Problèmes mécaniques multi-échelles: la méthode Arlequin , 1998 .

[3]  Olivier Pironneau,et al.  Domain decomposition methods for CAD , 1999 .

[4]  Hans J. Herrmann,et al.  A study of fragmentation processes using a discrete element method , 1995, cond-mat/9512017.

[5]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[6]  Hachmi Ben Dhia,et al.  Application of the Arlequin method to some structures with defects , 2002 .

[7]  I. Babuska,et al.  The partition of unity finite element method: Basic theory and applications , 1996 .

[8]  M. Gurtin,et al.  An introduction to continuum mechanics , 1981 .

[9]  B. Nayroles,et al.  Generalizing the finite element method: Diffuse approximation and diffuse elements , 1992 .

[10]  J. Z. Zhu,et al.  The finite element method , 1977 .

[11]  I. Babuska,et al.  The Partition of Unity Method , 1997 .

[12]  T. Belytschko,et al.  Element‐free Galerkin methods , 1994 .

[13]  Jacques Periaux,et al.  A distributed Lagrange multiplier/fictitious domain method for the simulation of flow around moving rigid bodies: application to particulate flow , 2000 .

[14]  T. Belytschko,et al.  MODELING HOLES AND INCLUSIONS BY LEVEL SETS IN THE EXTENDED FINITE-ELEMENT METHOD , 2001 .

[15]  G. Rateau,et al.  Analyse mathématique de la méthode Arlequin mixte , 2001 .

[16]  T. Hughes,et al.  The variational multiscale method—a paradigm for computational mechanics , 1998 .

[17]  Ivo Babuška,et al.  The p-Version of the Finite Element Method for Parabolic Equations. Part 1 , 1981 .

[18]  C. Farhat,et al.  A method of finite element tearing and interconnecting and its parallel solution algorithm , 1991 .

[19]  H. Dhia,et al.  Contact in the Arlequin Framework , 2002 .

[20]  Kurt Mehlhorn,et al.  Intersecting two polyhedra one of which is convex , 1985, FCT.

[21]  J. Tinsley Oden,et al.  Hierarchical modeling of heterogeneous solids , 1996 .

[22]  Joseph O'Rourke,et al.  Computational Geometry in C. , 1995 .

[23]  Xiao-Chuan Cai,et al.  Overlapping Nonmatching Grid Mortar Element Methods for Elliptic Problems , 1999 .

[24]  Hyun Gyu Kim,et al.  Arbitrary placement of local meshes in a global mesh by the interface‐element method (IEM) , 2003 .

[25]  J. Oden,et al.  Analysis and adaptive modeling of highly heterogeneous elastic structures , 1997 .

[26]  Ted Belytschko,et al.  Elastic crack growth in finite elements with minimal remeshing , 1999 .

[27]  T. Strouboulis,et al.  The generalized finite element method: an example of its implementation and illustration of its performance , 2000 .

[28]  C. Bernardi,et al.  A New Nonconforming Approach to Domain Decomposition : The Mortar Element Method , 1994 .

[29]  Ted Belytschko,et al.  The spectral overlay on finite elements for problems with high gradients , 1990 .

[30]  Noam Bernstein,et al.  Spanning the length scales in dynamic simulation , 1998 .

[31]  J. Fish The s-version of the finite element method , 1992 .

[32]  Jacob Fish,et al.  Adaptive and hierarchical modelling of fatigue crack propagation , 1993 .

[33]  G. Rateau Méthode Arlequin pour les problèmes mécaniques multi-échelles : applications à des problèmes de jonction et de fissuration de structures élancées , 2003 .

[34]  Faker Ben Belgacem,et al.  The Mortar finite element method with Lagrange multipliers , 1999, Numerische Mathematik.

[35]  J. Chaboche,et al.  FE2 multiscale approach for modelling the elastoviscoplastic behaviour of long fibre SiC/Ti composite materials , 2000 .

[36]  P. Tallec Domain decomposition methods in computational mechanics , 1994 .

[37]  I. Babuska,et al.  The generalized finite element method , 2001 .

[38]  T. Belytschko,et al.  A bridging domain method for coupling continua with molecular dynamics , 2004 .

[39]  Jacob Fish,et al.  The s‐version of the finite element method for multilayer laminates , 1992 .

[40]  P. Raviart,et al.  Primal hybrid finite element methods for 2nd order elliptic equations , 1977 .

[41]  H. L. Dret,et al.  Problèmes variationnels dans les multi-domaines : modélisation des jonctions et applications , 1991 .

[42]  Ted Belytschko,et al.  A finite element method for crack growth without remeshing , 1999 .

[43]  Jacob Fish,et al.  Adaptive s-method for linear elastostatics , 1993 .

[44]  Ted Belytschko,et al.  A coupled finite element-element-free Galerkin method , 1995 .

[45]  J. L. Steger,et al.  On the use of composite grid schemes in computational aerodynamics , 1987 .

[46]  T. Hughes Multiscale phenomena: Green's functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods , 1995 .