Ideal Structure of Leavitt Path Algebras with Coefficients in a Unital Commutative Ring

For a (countable) graph E and a unital commutative ring R, we analyze the ideal structure of the Leavitt path algebra L R (E) introduced by Mark Tomforde. We first modify the definition of basic ideals and then develop the ideal characterization of Mark Tomforde. We also give necessary and sufficient conditions for the primeness and the primitivity of L R (E), and we then determine prime graded basic ideals and left (or right) primitive graded ideals of L R (E). In particular, when E satisfies Condition (K) and R is a field, they imply that the set of prime ideals and the set of primitive ideals of L R (E) coincide.

[1]  M. Tomforde,et al.  Ideals in Graph Algebras , 2012, 1205.1247.

[2]  K. Rangaswamy The Theory of Prime Ideals of Leavitt Path Algebras over Arbitrary Graphs , 2011, 1106.4766.

[3]  M. Tomforde Leavitt path algebras with coefficients in a commutative ring , 2009, 0905.0478.

[4]  Mercedes Siles Molina,et al.  Chain conditions for Leavitt path algebras , 2009 .

[5]  Mercedes Siles Molina,et al.  Chain conditions for Leavitt path algebras , 2009 .

[6]  Mercedes Siles Molina,et al.  Locally finite Leavitt path algebras , 2008 .

[7]  G. Abrams,et al.  The Leavitt path algebras of arbitrary graphs , 2008 .

[8]  G. Abrams,et al.  The Leavitt path algebras of arbitrary graphs , 2008 .

[9]  E. Pardo,et al.  Prime Spectrum and Primitive Leavitt Path Algebras , 2007, 0712.2102.

[10]  Mercedes Siles Molina,et al.  Finite-dimensional Leavitt path algebras , 2007 .

[11]  Mercedes Siles Molina,et al.  Finite-dimensional Leavitt path algebras , 2007 .

[12]  Mercedes Siles Molina,et al.  The socle of a Leavitt path algebra , 2007, math/0701637.

[13]  M. Tomforde Uniqueness theorems and ideal structure for Leavitt path algebras , 2006, math/0612628.

[14]  G. Abrams,et al.  The Leavitt path algebra of a graph , 2005, math/0509494.

[15]  E. Pardo,et al.  Exchange Leavitt path algebras and stable rank , 2005, math/0509035.

[16]  I. Raeburn theory of graph algebras , 2005 .

[17]  E. Pardo,et al.  Nonstable K-theory for Graph Algebras , 2004, math/0412243.

[18]  J. Hong,et al.  The primitive ideal space of the $C^{*}$-algebras of infinite graphs , 2002, math/0211162.

[19]  J. Hong,et al.  Stable rank of graph algebras. Type I graph algebras and their limits , 2002, math/0211144.

[20]  J. Hong,et al.  Stable rank of graph algebras. Type I graph algebras and their limits , 2002, math/0211144.

[21]  I. Raeburn,et al.  The ideal structure of the $C\sp *$-algebras of infinite graphs , 2001, math/0109142.

[22]  I. Raeburn,et al.  The ideal structure of the $C\sp *$-algebras of infinite graphs , 2001, math/0109142.

[23]  D. Drinen,et al.  The $C^*$-Algebras of Arbitrary Graphs , 2000, math/0009228.

[24]  D. Drinen,et al.  The $C^*$-Algebras of Arbitrary Graphs , 2000, math/0009228.

[25]  I. Raeburn,et al.  THE C -ALGEBRAS OF ROW-FINITE GRAPHS , 2000 .

[26]  I. Raeburn,et al.  THE C -ALGEBRAS OF ROW-FINITE GRAPHS , 2000 .

[27]  I. Raeburn,et al.  The ideal structure of Cuntz–Krieger algebras , 1997, Ergodic Theory and Dynamical Systems.

[28]  I. Raeburn,et al.  The ideal structure of Cuntz–Krieger algebras , 1997, Ergodic Theory and Dynamical Systems.

[29]  C. Nastasescu,et al.  Graded ring theory , 1982 .

[30]  Wolfgang Krieger,et al.  A class ofC*-algebras and topological Markov chains , 1980 .

[31]  Wolfgang Krieger,et al.  A class ofC*-algebras and topological Markov chains , 1980 .

[32]  W. Leavitt The module type of a ring , 1962 .

[33]  W. Leavitt The module type of a ring , 1962 .