Additive perturbed generalized Mandelbrot-Julia sets
暂无分享,去创建一个
[1] Heinz-Otto Peitgen,et al. The science of fractal images , 2011 .
[2] Uday G. Gujar,et al. Fractal images from z <-- z alpha + c in the complex z-plane , 1992, Comput. Graph..
[3] J. Argyris,et al. On the Julia sets of a noise-perturbed Mandelbrot map , 2002 .
[4] J. Argyris,et al. The influence of noise on the correlation dimension of chaotic attractors , 1998 .
[5] Leon O. Chua,et al. EXPERIMENTAL SYNCHRONIZATION OF CHAOS USING CONTINUOUS CONTROL , 1994 .
[6] Uday G. Gujar,et al. Analysis of z-plane fractal images from z <-- z alpha + c for alpha < 0 , 1993, Comput. Graph..
[7] Akhlesh Lakhtakia,et al. Julia sets of switched processes , 1991, Comput. Graph..
[8] V. Varadan,et al. COMMENT: On the symmetries of the Julia sets for the process z==>zp+c , 1987 .
[9] J. Yorke,et al. Period Three Implies Chaos , 1975 .
[10] C. Beck. Physical meaning for Mandelbrot and Julia sets , 1999 .
[11] Joshua C. Sasmor,et al. Fractals for functions with rational exponent , 2004, Comput. Graph..
[12] M. Feigenbaum. Quantitative universality for a class of nonlinear transformations , 1978 .
[13] Uday G. Gujar,et al. Fractals from z <-- z alpha + c in the complex c-plane , 1991, Comput. Graph..
[14] Ioannis Andreadis,et al. On perturbations of the Mandelbrot map , 2000 .
[15] Gonzalo Álvarez,et al. External arguments of Douady cauliflowers in the Mandelbrot set , 2004, Comput. Graph..
[16] J. Argyris,et al. On the Julia set of the perturbed Mandelbrot map , 2000 .
[17] Fausto Montoya Vitini,et al. Chaotic bands in the Mandelbrot set , 2004, Comput. Graph..
[18] Xingyuan Wang,et al. ANALYSIS OF C-PLANE FRACTAL IMAGES FROM z ← zα + c FOR (α < 0) , 2000 .
[19] Xingyuan Wang,et al. Research on fractal structure of generalized M-J sets utilized Lyapunov exponents and periodic scanning techniques , 2006, Appl. Math. Comput..
[20] Dietmar Saupe,et al. Chaos and fractals - new frontiers of science , 1992 .
[21] Young Ik Kim,et al. Accurate computation of component centers in the degree-n bifurcation set , 2004 .
[22] M. Klein. Mandelbrot set in a non-analytic map , 1988 .
[23] Earl F. Glynn. The evolution of the gingerbread man , 1991, Comput. Graph..