Investigation of additives nanoparticles and sphere barriers effects on the fluid flow inside a nanochannel impressed by an extrinsic electric field: A molecular dynamics simulation

[1]  D. Toghraie,et al.  Molecular dynamics simulation of Water-Copper nanofluid flow in a three-dimensional nanochannel with different types of surface roughness geometry for energy economic management , 2020, Journal of Molecular Liquids.

[2]  M. Afrand,et al.  The Electric Field and Microchannel Type Effects on H2O/Fe3O4 Nanofluid Boiling Process: Molecular Dynamics Study , 2020, International Journal of Thermophysics.

[3]  Q. Bach,et al.  Develop Molecular Dynamics Method to Simulate the Flow and Thermal Domains of H2O/Cu Nanofluid in a Nanochannel Affected by an External Electric Field , 2020, International journal of thermophysics.

[4]  Q. Bach,et al.  Develop optimal network topology of artificial neural network (AONN) to predict the hybrid nanofluids thermal conductivity according to the empirical data of Al2O3 – Cu nanoparticles dispersed in ethylene glycol , 2020 .

[5]  Muhammad Shadman Lakmehsari,et al.  Electric field assisted desalination of water using B- and N-doped-graphene sheets: A non-equilibrium molecular dynamics study , 2020 .

[6]  Shuting Yao,et al.  The effects of surface topography and non-uniform wettability on fluid flow and interface slip in rough nanochannel , 2020 .

[7]  J. Pablo.,et al.  Dinámica del volteo de bloques en taludes rocosos , 2020 .

[8]  M. Izadifard,et al.  Studying temperature effects on electronic and optical properties of cubic CH3NH3SnI3 perovskite , 2020, Journal of Computational Electronics.

[9]  M. Safaei,et al.  Nanofluids as secondary fluid in the refrigeration system: Experimental data, regression, ANFIS, and NN modeling , 2019 .

[10]  M. Afrand,et al.  Molecular dynamics simulation of Couette and Poiseuille Water-Copper nanofluid flows in rough and smooth nanochannels with different roughness configurations , 2019, Chemical Physics.

[11]  Davood Toghraie,et al.  Investigation of thermal properties of DNA structure with precise atomic arrangement via equilibrium and non-equilibrium molecular dynamics approaches , 2019, Comput. Methods Programs Biomed..

[12]  T. Karakasidis,et al.  Molecular dynamics simulations of ion separation in nano-channel water flows using an electric field , 2019, Molecular Simulation.

[13]  Hooman Yarmand,et al.  Assessment of thermal conductivity enhancement of nano-antifreeze containing single-walled carbon nanotubes: Optimal artificial neural network and curve-fitting , 2019, Physica A: Statistical Mechanics and its Applications.

[14]  M. Afrand,et al.  Evaluating the effect of temperature and concentration on the thermal conductivity of ZnO-TiO2/EG hybrid nanofluid using artificial neural network and curve fitting on experimental data , 2019, Physica A: Statistical Mechanics and its Applications.

[15]  D. Toghraie,et al.  Molecular dynamics simulation of fluid flow passing through a nanochannel: Effects of geometric shape of roughnesses , 2019, Journal of Molecular Liquids.

[16]  Masoud Afrand,et al.  Appraising influence of COOH-MWCNTs on thermal conductivity of antifreeze using curve fitting and neural network , 2019, Physica A: Statistical Mechanics and its Applications.

[17]  A. Al-Rashed,et al.  Effects on thermophysical properties of carbon based nanofluids: Experimental data, modelling using regression, ANFIS and ANN , 2018, International Journal of Heat and Mass Transfer.

[18]  A. Liakopoulos,et al.  Darcy-Weisbach friction factor at the nanoscale: From atomistic calculations to continuum models , 2017 .

[19]  Somchai Wongwises,et al.  Prediction of dynamic viscosity of a hybrid nano-lubricant by an optimal artificial neural network , 2016 .

[20]  Francine Luppé,et al.  Experimental verification of nanofluid shear-wave reconversion in ultrasonic fields. , 2016, Nanoscale.

[21]  Shahaboddin Shamshirband,et al.  Performance investigation of micro- and nano-sized particle erosion in a 90° elbow using an ANFIS model , 2015 .

[22]  A. Liakopoulos,et al.  Parameters Affecting Slip Length at the Nanoscale , 2013 .

[23]  Stan Moore,et al.  Characteristics of thermal conductivity in classical water models. , 2013, The Journal of chemical physics.

[24]  Robert A. Taylor,et al.  Small particles, big impacts: A review of the diverse applications of nanofluids , 2013 .

[25]  A. Thompson,et al.  Computational aspects of many-body potentials , 2012 .

[26]  A. Liakopoulos,et al.  A dissipative particle dynamics study of flow in periodically grooved nanochannels , 2012 .

[27]  Peng Wang,et al.  Implementing molecular dynamics on hybrid high performance computers - short range forces , 2011, Comput. Phys. Commun..

[28]  Haisheng Chen,et al.  Stability of nanofluids in quiescent and shear flow fields , 2011, Nanoscale research letters.

[29]  Reza Kamali,et al.  Molecular dynamics simulation of surface roughness effects on nanoscale flows , 2011 .

[30]  Nikolaos Asproulis,et al.  Surface roughness effects in micro and nanofluidic devices , 2010 .

[31]  Jinliang Xu,et al.  Molecular dynamics simulation of nanoscale liquid flows , 2010 .

[32]  Donald A. Nield,et al.  Natural convective boundary-layer flow of a nanofluid past a vertical plate , 2010 .

[33]  Haisheng Chen,et al.  Predicting thermal conductivity of liquid suspensions of nanoparticles (nanofluids) based on rheology , 2009 .

[34]  Antonios Liakopoulos,et al.  Effects of wall roughness on flow in nanochannels. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[35]  A. A. Mohamad,et al.  Effect of Wall Roughness on the Slip of Fluid in a Microchannel , 2008 .

[36]  Wenhua Yu,et al.  Nanofluids: Science and Technology , 2007 .

[37]  Jens Harting,et al.  Simulation of fluid flow in hydrophobic rough microchannels , 2007, 0709.3966.

[38]  J. Buongiorno Convective Transport in Nanofluids , 2006 .

[39]  Harald Schumny,et al.  Nanosystems - molecular machinery, manufacturing, and computation: by K. Eric Drexler. John Wiley & Sons, Chichester, England, 1992. ISBN 0-471-57518-6. 556 pages. Illustrated, Appendices, Glossary with detailed explanations, 337 references, extended Index. , 1993 .

[40]  Steve Plimpton,et al.  Fast parallel algorithms for short-range molecular dynamics , 1993 .

[41]  W. Goddard,et al.  UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations , 1992 .

[42]  K. Sharp,et al.  Calculating the electrostatic potential of molecules in solution: Method and error assessment , 1988 .

[43]  M. Baskes,et al.  Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals , 1984 .

[44]  Aneesur Rahman,et al.  Correlations in the Motion of Atoms in Liquid Argon , 1964 .

[45]  G. Vineyard,et al.  THE DYNAMICS OF RADIATION DAMAGE , 1960 .

[46]  Janet E. Jones On the determination of molecular fields. III.—From crystal measurements and kinetic theory data , 1924 .

[47]  M. Afrand,et al.  Effects of surface roughness with the spherical shape on the fluid flow of argon atoms flowing into the microchannel, under boiling condition using molecular dynamic simulation , 2020 .

[48]  Tamar Schlick,et al.  Pursuing Laplace's vision on modern computers , 1996 .

[49]  H. Berendsen,et al.  Interaction Models for Water in Relation to Protein Hydration , 1981 .