Gröbner Bases, Coding, and Cryptography

Coding theory and cryptography allow secure and reliable data transmission, which is at the heart of modern communication. Nowadays, it is hard to find an electronic device without some code inside. Grbner bases have emerged as the main tool in computational algebra, permitting numerous applications, both in theoretical contexts and in practical situations. This book is the first book ever giving a comprehensive overview on the application of commutative algebra to coding theory and cryptography. For example, all important properties of algebraic/geometric coding systems (including encoding, construction, decoding, list decoding) are individually analysed, reporting all significant approaches appeared in the literature. Also, stream ciphers, PK cryptography, symmetric cryptography and Polly Cracker systems deserve each a separate chapter, where all the relevant literature is reported and compared. While many short notes hint at new exciting directions, the reader will find that all chapters fit nicely within a unified notation.

[1]  Claude E. Shannon,et al.  Communication theory of secrecy systems , 1949, Bell Syst. Tech. J..

[2]  Alexander Barg,et al.  On the complexity of minimum distance decoding of long linear codes , 1999, IEEE Trans. Inf. Theory.

[3]  Douglas A. Leonard A Tutorial on AG Code Decoding from a Gröbner Basis Perspective , 2009, Gröbner Bases, Coding, and Cryptography.

[4]  James L. Massey,et al.  On Repeated-root Cyclic Codes , 1991, IEEE Trans. Inf. Theory.

[5]  Elwyn R. Berlekamp,et al.  Algebraic coding theory , 1984, McGraw-Hill series in systems science.

[6]  Ruud Pellikaan,et al.  Decoding Linear Error-Correcting Codes up to Half the Minimum Distance with Gröbner Bases , 2009, Gröbner Bases, Coding, and Cryptography.

[7]  Jintai Ding,et al.  Overview of Cryptanalysis Techniques in Multivariate Public Key Cryptography , 2009, Gröbner Bases, Coding, and Cryptography.

[8]  Masao Kasahara,et al.  A Method for Solving Key Equation for Decoding Goppa Codes , 1975, Inf. Control..

[9]  V. Pless Introduction to the Theory of Error-Correcting Codes , 1991 .

[10]  Douglas A. Leonard A Tutorial on AG Code Construction from a Gröbner Basis Perspective , 2009, Gröbner Bases, Coding, and Cryptography.

[11]  Eleonora Guerrini,et al.  FGLM-Like Decoding: from Fitzpatrick's Approach to Recent Developments , 2009, Gröbner Bases, Coding, and Cryptography.

[12]  Richard W. Hamming,et al.  Error detecting and error correcting codes , 1950 .

[13]  S. Bulygin,et al.  Decoding and Finding the Minimum Distance with Gröbner Bases: History and New Insights , 2010 .

[14]  Emmanuela Orsini,et al.  Decoding Cyclic Codes: the Cooper Philosophy , 2009, Gröbner Bases, Coding, and Cryptography.

[15]  Marta Giorgetti About the nth-Root Codes: a Gröbner Basis Approach to the Weight Computation , 2009, Gröbner Bases, Coding, and Cryptography.

[16]  James L. Massey,et al.  Shift-register synthesis and BCH decoding , 1969, IEEE Trans. Inf. Theory.

[17]  C. E. SHANNON,et al.  A mathematical theory of communication , 1948, MOCO.

[18]  Shu Lin,et al.  An introduction to error-correcting codes , 1970 .

[19]  Claude E. Shannon,et al.  A mathematical theory of communication , 1948, MOCO.

[20]  Yuri A. Blinkov,et al.  Involutive bases of polynomial ideals , 1998, math/9912027.

[21]  Olav Geil Algebraic Geometry Codes from Order Domains , 2009, Gröbner Bases, Coding, and Cryptography.

[22]  Whitfield Diffie,et al.  New Directions in Cryptography , 1976, IEEE Trans. Inf. Theory.

[23]  Elwyn R. Berlekamp,et al.  On the inherent intractability of certain coding problems (Corresp.) , 1978, IEEE Trans. Inf. Theory.

[24]  Shojiro Sakata,et al.  The BMS Algorithm and Decoding of AG Codes , 2009, Gröbner Bases, Coding, and Cryptography.

[25]  Alexander Vardy,et al.  Algorithmic complexity in coding theory and the minimum distance problem , 1997, STOC '97.

[26]  Teo Mora The FGLM Problem and Möller's Algorithm on Zero-dimensional Ideals , 2009, Gröbner Bases, Coding, and Cryptography.

[27]  Guy Castagnoli On the Asymptotic Badness of Cyclic Codes with Block-Lengths Composed from a Fixed Set of Prime Factors , 1988, AAECC.

[28]  S. Berman Semisimple cyclic and Abelian codes. II , 1967 .

[29]  Sanjoy K. Mitter,et al.  Some randomized code constructions from group actions , 2006, IEEE Transactions on Information Theory.

[30]  Dwijendra K. Ray-Chaudhuri,et al.  Binary mixture flow with free energy lattice Boltzmann methods , 2022, arXiv.org.

[31]  Kevin T. Phelps,et al.  Coding Theory: The Essentials , 1991 .

[32]  G. David Forney,et al.  On decoding BCH codes , 1965, IEEE Trans. Inf. Theory.

[33]  K. Brown,et al.  Graduate Texts in Mathematics , 1982 .

[34]  Frederik Armknecht,et al.  Algebraic Attacks on Stream Ciphers with Gröbner Bases , 2009, Gröbner Bases, Coding, and Cryptography.

[35]  Shu Lin,et al.  Long BCH Codes Are Bad , 1967, Inf. Control..

[36]  Matthew J. B. Robshaw,et al.  Algebraic aspects of the advanced encryption standard , 2006 .

[37]  Bruno Buchberger,et al.  Bruno Buchberger's PhD thesis 1965: An algorithm for finding the basis elements of the residue class ring of a zero dimensional polynomial ideal , 2006, J. Symb. Comput..

[38]  Gretchen L. Matthews Viewing Multipoint Codes as Subcodes of One-Point Codes , 2009, Gröbner Bases, Coding, and Cryptography.

[39]  Jørn Justesen,et al.  Class of constructive asymptotically good algebraic codes , 1972, IEEE Trans. Inf. Theory.

[40]  R. Blahut Theory and practice of error control codes , 1983 .

[41]  Jon-Lark Kim,et al.  A Prize Problem in Coding Theory , 2009, Gröbner Bases, Coding, and Cryptography.

[42]  Danilo Gligoroski,et al.  A New Measure to Estimate Pseudo-Randomness of Boolean Functions and Relations with Gröbner Bases , 2009, Gröbner Bases, Coding, and Cryptography.