The neural network behind the eyes of a fly

With its regular, almost crystal-like structure, the fly optic lobe represents a particularly beautiful piece of nervous system, which consequently has attracted the attention of many researchers over the years. While the anatomy of the various cell types had been known from Golgi studies for long, their visual response properties could only recently be revealed thanks to the advent of cell-specific driver lines and genetically encoded indicators of neural activity. Furthermore, dense EM reconstruction of several columns of the fly optic lobe now provides information about the synaptic connections between the different cell types, and RNA sequencing sheds light on the transmitter systems and ionic conductances used for communication between them. Together with the molecular tools allowing for blocking and activating individual, genetically targeted cell types, the fly optic lobe can soon be one of the best-understood visual neuropils in neuroscience. In this review, we summarize what we have learned so far, and discuss the major difficulties that keep us from a complete understanding of visual processing in the fly optic lobe.

[1]  Stefan R. Pulver,et al.  Ultra-sensitive fluorescent proteins for imaging neuronal activity , 2013, Nature.

[2]  Michael S. Drews,et al.  Dynamic Signal Compression for Robust Motion Vision in Flies , 2020, Current Biology.

[3]  Alexander Borst,et al.  Functional Specialization of Parallel Motion Detection Circuits in the Fly , 2013, The Journal of Neuroscience.

[4]  Michael S. Drews,et al.  Glutamate Signaling in the Fly Visual System , 2018, iScience.

[5]  J. Dowling,et al.  Organization of the retina of the mudpuppy, Necturus maculosus. II. Intracellular recording. , 1969, Journal of neurophysiology.

[6]  Alexander Borst,et al.  Visualizing retinotopic half-wave rectified input to the motion detection circuitry of Drosophila , 2010, Nature Neuroscience.

[7]  F. Gabbiani,et al.  Multiplexing of Motor Information in the Discharge of a Collision Detecting Neuron during Escape Behaviors , 2011, Neuron.

[8]  S. Laughlin,et al.  Predictive coding: a fresh view of inhibition in the retina , 1982, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[9]  B Schnell,et al.  Processing of horizontal optic flow in three visual interneurons of the Drosophila brain. , 2010, Journal of neurophysiology.

[10]  N. Strausfeld,et al.  Visual Motion-Detection Circuits in Flies: Parallel Direction- and Non-Direction-Sensitive Pathways between the Medulla and Lobula Plate , 1996, The Journal of Neuroscience.

[11]  A. Borst,et al.  A common directional tuning mechanism of Drosophila motion-sensing neurons in the ON and in the OFF pathway , 2017, eLife.

[12]  Isabelle Bülthoff,et al.  Deoxyglucose mapping of nervous activity induced inDrosophila brain by visual movement , 1984, Journal of Comparative Physiology A.

[13]  Yvette E. Fisher,et al.  Orientation Selectivity Sharpens Motion Detection in Drosophila , 2015, Neuron.

[14]  R. Masland The Neuronal Organization of the Retina , 2012, Neuron.

[15]  Shin-ya Takemura,et al.  Synaptic circuits of the Drosophila optic lobe: The input terminals to the medulla , 2008, The Journal of comparative neurology.

[16]  Roger C. Hardie,et al.  Common strategies for light adaptation in the peripheral visual systems of fly and dragonfly , 1978, Journal of comparative physiology.

[17]  A. Borst,et al.  Neural Mechanisms for Drosophila Contrast Vision , 2015, Neuron.

[18]  A. Borst,et al.  Internal Structure of the Fly Elementary Motion Detector , 2011, Neuron.

[19]  A. Borst,et al.  Response Properties of Motion-Sensitive Visual Interneurons in the Lobula Plate of Drosophila melanogaster , 2008, Current Biology.

[20]  Aljoscha Nern,et al.  The comprehensive connectome of a neural substrate for ‘ON’ motion detection in Drosophila , 2017, eLife.

[21]  Shawn R. Olsen,et al.  Divisive Normalization in Olfactory Population Codes , 2010, Neuron.

[22]  Damon A. Clark,et al.  Processing properties of ON and OFF pathways for Drosophila motion detection , 2014, Nature.

[23]  Michael B. Reiser,et al.  Direct Observation of ON and OFF Pathways in the Drosophila Visual System , 2014, Current Biology.

[24]  Alexander Borst,et al.  Principles of visual motion detection , 1989, Trends in Neurosciences.

[25]  Alexander Borst,et al.  ON and OFF pathways in Drosophila motion vision , 2010, Nature.

[26]  Shin-ya Takemura,et al.  Ig Superfamily Ligand and Receptor Pairs Expressed in Synaptic Partners in Drosophila , 2015, Cell.

[27]  A. Borst Drosophila's View on Insect Vision , 2009, Current Biology.

[28]  Alexander Borst,et al.  Object tracking in motion-blind flies , 2013, Nature Neuroscience.

[29]  Michael B. Reiser,et al.  The Emergence of Directional Selectivity in the Visual Motion Pathway of Drosophila , 2017, Neuron.

[30]  Michael B. Reiser,et al.  Simple integration of fast excitation and offset, delayed inhibition computes directional selectivity in Drosophila , 2017, Nature Neuroscience.

[31]  A. Borst,et al.  Transgenic line for the identification of cholinergic release sites in Drosophila melanogaster , 2017, Journal of Experimental Biology.

[32]  Alexander Borst,et al.  Local motion detectors are required for the computation of expansion flow-fields , 2015, Biology Open.

[33]  A. Borst,et al.  Common circuit design in fly and mammalian motion vision , 2015, Nature Neuroscience.

[34]  Rachel I. Wilson,et al.  Glutamate is an inhibitory neurotransmitter in the Drosophila olfactory system , 2013, Proceedings of the National Academy of Sciences.

[35]  Julie H. Simpson,et al.  Genetic Manipulation of Genes and Cells in the Nervous System of the Fruit Fly , 2011, Neuron.

[36]  Michael S. Drews,et al.  The Temporal Tuning of the Drosophila Motion Detectors Is Determined by the Dynamics of Their Input Elements , 2017, Current Biology.

[37]  Mehmet F. Keleş,et al.  Object-Detecting Neurons in Drosophila , 2017, Current Biology.

[38]  Ian A. Meinertzhagen,et al.  A common evolutionary origin for the ON- and OFF-edge motion detection pathways of the Drosophila visual system , 2015, Front. Neural Circuits.

[39]  A. Borst,et al.  Columnar cells necessary for motion responses of wide-field visual interneurons in Drosophila , 2012, Journal of Comparative Physiology.

[40]  G. Rubin,et al.  A directional tuning map of Drosophila elementary motion detectors , 2013, Nature.

[41]  Werner Reichardt,et al.  A theory of the pattern induced flight orientation of the fly Musca domestica II , 1975, Biological Cybernetics.

[42]  Julie H. Simpson,et al.  A GAL4-driver line resource for Drosophila neurobiology. , 2012, Cell reports.

[43]  M. Schnitzer,et al.  GABAergic Lateral Interactions Tune the Early Stages of Visual Processing in Drosophila , 2013, Neuron.

[44]  Alexander Borst,et al.  Complementary mechanisms create direction selectivity in the fly , 2016, eLife.

[45]  Gary Huang,et al.  Comparisons between the ON- and OFF-edge motion pathways in the Drosophila brain , 2019, eLife.

[46]  N. Strausfeld,et al.  Neuronal basis for parallel visual processing in the fly , 1991, Visual Neuroscience.

[47]  N. Strausfeld,et al.  Visual Motion-Detection Circuits in Flies: Small-Field Retinotopic Elements Responding to Motion Are Evolutionarily Conserved across Taxa , 1996, The Journal of Neuroscience.

[48]  N. Perrimon,et al.  Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. , 1993, Development.

[49]  D. Ringach Mapping receptive fields in primary visual cortex , 2004, The Journal of physiology.

[50]  B. Hassenstein,et al.  Systemtheoretische Analyse der Zeit-, Reihenfolgen- und Vorzeichenauswertung bei der Bewegungsperzeption des Rüsselkäfers Chlorophanus , 1956 .

[51]  N. Strausfeld Atlas of an Insect Brain , 1976, Springer Berlin Heidelberg.

[52]  Alexander Borst,et al.  How fly neurons compute the direction of visual motion , 2019, Journal of Comparative Physiology A.

[53]  R. Hengstenberg,et al.  Estimation of self-motion by optic flow processing in single visual interneurons , 1996, Nature.

[54]  R Hengstenberg,et al.  Dendritic structure and receptive-field organization of optic flow processing interneurons in the fly. , 1998, Journal of neurophysiology.

[55]  A. Borst,et al.  Comprehensive Characterization of the Major Presynaptic Elements to the Drosophila OFF Motion Detector , 2016, Neuron.

[56]  J. McAlpine Phylogeny and classification of the Muscomorpha , 1989 .

[57]  R. Hengstenberg Common visual response properties of giant vertical cells in the lobula plate of the blowflyCalliphora , 1982, Journal of comparative physiology.

[58]  Michael B. Reiser,et al.  Wide-Field Feedback Neurons Dynamically Tune Early Visual Processing , 2014, Neuron.

[59]  Ben Poole,et al.  Direction Selectivity in Drosophila Emerges from Preferred-Direction Enhancement and Null-Direction Suppression , 2016, The Journal of Neuroscience.

[60]  K. Hausen The Lobula-Complex of the Fly: Structure, Function and Significance in Visual Behaviour , 1984 .

[61]  A. Borst,et al.  Extreme Compartmentalization in a Drosophila Amacrine Cell , 2019, Current Biology.

[62]  J. H. van Hateren,et al.  Real and optimal neural images in early vision , 1992, Nature.

[63]  K. Hausen Motion sensitive interneurons in the optomotor system of the fly , 1982, Biological Cybernetics.

[64]  R. Hardie,et al.  Three classes of potassium channels in large monopolar cells of the blowfly Calliphora vicina , 1990, Journal of Comparative Physiology A.

[65]  Michael B. Reiser,et al.  Contributions of the 12 Neuron Classes in the Fly Lamina to Motion Vision , 2013, Neuron.

[66]  Ian A. Meinertzhagen,et al.  Cholinergic Circuits Integrate Neighboring Visual Signals in a Drosophila Motion Detection Pathway , 2011, Current Biology.

[67]  Alexander Borst,et al.  Visual Projection Neurons Mediating Directed Courtship in Drosophila , 2018, Cell.

[68]  S. Laughlin The role of sensory adaptation in the retina. , 1989, The Journal of experimental biology.

[69]  Ian A. Meinertzhagen,et al.  Candidate Neural Substrates for Off-Edge Motion Detection in Drosophila , 2014, Current Biology.

[70]  M. Carandini,et al.  Normalization as a canonical neural computation , 2011, Nature Reviews Neuroscience.

[71]  N. Strausfeld,et al.  Visual motion detection circuits in flies: peripheral motion computation by identified small-field retinotopic neurons , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[72]  Michael B. Reiser,et al.  Visual projection neurons in the Drosophila lobula link feature detection to distinct behavioral programs , 2016, eLife.

[73]  H. Barlow,et al.  The mechanism of directionally selective units in rabbit's retina. , 1965, The Journal of physiology.

[74]  K. Fischbach,et al.  The optic lobe of Drosophila melanogaster , 2004, Cell and Tissue Research.

[75]  Michael B. Reiser,et al.  Ultra-selective looming detection from radial motion opponency , 2017, Nature.

[76]  Alexander Borst,et al.  A biophysical mechanism for preferred direction enhancement in fly motion vision , 2018, PLoS Comput. Biol..

[77]  Damon A. Clark,et al.  Modular Use of Peripheral Input Channels Tunes Motion-Detecting Circuitry , 2013, Neuron.

[78]  Alexander Borst,et al.  Optogenetic and Pharmacologic Dissection of Feedforward Inhibition in Drosophila Motion Vision , 2014, The Journal of Neuroscience.

[79]  Michael Z. Lin,et al.  Subcellular Imaging of Voltage and Calcium Signals Reveals Neural Processing In Vivo , 2016, Cell.

[80]  Roger C. Hardie,et al.  Electrophysiological analysis of fly retina. I: Comparative properties of R1-6 and R 7 and 8 , 1979, Journal of comparative physiology.

[81]  Santiago Ramón y Cajal,et al.  Contribución al conocimiento de los centros nerviosos de los insectos , 1915 .

[82]  K. Fischbach,et al.  The optic lobe of Drosophila melanogaster. I. A Golgi analysis of wild-type structure , 1989, Cell and Tissue Research.

[83]  D. Heeger Normalization of cell responses in cat striate cortex , 1992, Visual Neuroscience.

[84]  E J Chichilnisky,et al.  A simple white noise analysis of neuronal light responses , 2001, Network.

[85]  Bence P Ölveczky,et al.  The promise and perils of causal circuit manipulations , 2018, Current Opinion in Neurobiology.

[86]  M. Dickinson,et al.  Visually Mediated Motor Planning in the Escape Response of Drosophila , 2008, Current Biology.

[87]  K. Fischbach,et al.  Activity labeling patterns in the medulla of Drosophila melanogaster caused by motion stimuli , 1992, Cell and Tissue Research.

[88]  Thomas R. Clandinin,et al.  A Class of Visual Neurons with Wide-Field Properties Is Required for Local Motion Detection , 2015, Current Biology.

[89]  Alexander Borst,et al.  Neural Circuit to Integrate Opposing Motions in the Visual Field , 2015, Cell.

[90]  A. Borst,et al.  Neural Circuit Components of the Drosophila OFF Motion Vision Pathway , 2014, Current Biology.

[91]  A. Borst,et al.  Functional Specialization of Neural Input Elements to the Drosophila ON Motion Detector , 2015, Current Biology.

[92]  C. Koch,et al.  Multiplicative computation in a visual neuron sensitive to looming , 2002, Nature.