Neuromodulatory control of striatal plasticity and behavior

[1]  G. Lynch,et al.  Presynaptic BDNF Promotes Postsynaptic Long-Term Potentiation in the Dorsal Striatum , 2010, The Journal of Neuroscience.

[2]  Paul Greengard,et al.  Distinct subclasses of medium spiny neurons differentially regulate striatal motor behaviors , 2010, Proceedings of the National Academy of Sciences.

[3]  Yihui Cui,et al.  Distinct coincidence detectors govern the corticostriatal spike timing‐dependent plasticity , 2010, The Journal of physiology.

[4]  Anatol C. Kreitzer,et al.  Regulation of parkinsonian motor behaviours by optogenetic control of basal ganglia circuitry , 2010, Nature.

[5]  P. Calabresi,et al.  A53T-Alpha-Synuclein Overexpression Impairs Dopamine Signaling and Striatal Synaptic Plasticity in Old Mice , 2010, PloS one.

[6]  Bernardo L. Sabatini,et al.  Competitive regulation of synaptic Ca influx by D2 dopamine and A2A adenosine receptors , 2010, Nature Neuroscience.

[7]  T. Sejnowski,et al.  Convergent evidence for abnormal striatal synaptic plasticity in dystonia , 2010, Neurobiology of Disease.

[8]  C. Stoetzner,et al.  State-dependent plasticity of the corticostriatal pathway , 2010, Neuroscience.

[9]  Talia N. Lerner,et al.  Endocannabinoid Signaling Mediates Psychomotor Activation by Adenosine A2A Antagonists , 2010, The Journal of Neuroscience.

[10]  J. Wess,et al.  A Subpopulation of Neuronal M4 Muscarinic Acetylcholine Receptors Plays a Critical Role in Modulating Dopamine-Dependent Behaviors , 2010, The Journal of Neuroscience.

[11]  N. Narayanan,et al.  Metabolic hormones, dopamine circuits, and feeding , 2010, Frontiers in Neuroendocrinology.

[12]  A. Bonci,et al.  Role of orexin/hypocretin and CRF in the formation of drug-dependent synaptic plasticity in the mesolimbic system , 2009, Neuropharmacology.

[13]  W. Gan,et al.  Stably maintained dendritic spines are associated with lifelong memories , 2009, Nature.

[14]  Willie F. Tobin,et al.  Rapid formation and selective stabilization of synapses for enduring motor memories , 2009, Nature.

[15]  Thomas Wichmann,et al.  Update on models of basal ganglia function and dysfunction. , 2009, Parkinsonism & related disorders.

[16]  X. Zhuang,et al.  Adenylyl Cyclase Type 5 Contributes to Corticostriatal Plasticity and Striatum-Dependent Learning , 2009, The Journal of Neuroscience.

[17]  A. Pisani,et al.  Impaired dopamine release and synaptic plasticity in the striatum of Parkin−/− mice , 2009, Journal of neurochemistry.

[18]  D. Centonze,et al.  A Substrate Trapping Mutant Form of Striatal-Enriched Protein Tyrosine Phosphatase Prevents Amphetamine-Induced Stereotypies and Long-Term Potentiation in the Striatum , 2009, Biological Psychiatry.

[19]  S. Schiffmann,et al.  D2R striatopallidal neurons inhibit both locomotor and drug reward processes , 2009, Nature Neuroscience.

[20]  D. Lovinger,et al.  Dynamic reorganization of striatal circuits during the acquisition and consolidation of a skill , 2009, Nature Neuroscience.

[21]  Marc Flajolet,et al.  FGF acts as a co-transmitter through adenosine A2A receptor to regulate synaptic plasticity , 2008, Nature Neuroscience.

[22]  Anatol C. Kreitzer,et al.  Striatal Plasticity and Basal Ganglia Circuit Function , 2008, Neuron.

[23]  A. Nishi,et al.  Regulation of DARPP‐32 phosphorylation by three distinct dopamine D1‐like receptor signaling pathways in the neostriatum , 2008, Journal of neurochemistry.

[24]  P. Greengard,et al.  Dichotomous Dopaminergic Control of Striatal Synaptic Plasticity , 2008, Science.

[25]  B. Gloss,et al.  Drd1a-tdTomato BAC Transgenic Mice for Simultaneous Visualization of Medium Spiny Neurons in the Direct and Indirect Pathways of the Basal Ganglia , 2008, The Journal of Neuroscience.

[26]  C. Bergson,et al.  A Crucial Role for cAMP and Protein Kinase A in D1 Dopamine Receptor Regulated Intracellular Calcium Transients , 2008, Neurosignals.

[27]  Douglas R. Porter,et al.  Impaired dopamine release and synaptic plasticity in the striatum of PINK1-deficient mice , 2007, Proceedings of the National Academy of Sciences.

[28]  W. Schultz Multiple dopamine functions at different time courses. , 2007, Annual review of neuroscience.

[29]  D. Lovinger,et al.  Combined Activation of L-Type Ca2+ Channels and Synaptic Transmission Is Sufficient to Induce Striatal Long-Term Depression , 2007, The Journal of Neuroscience.

[30]  Kristen K. Ade,et al.  Anandamide Regulates Postnatal Development of Long-Term Synaptic Plasticity in the Rat Dorsolateral Striatum , 2007, The Journal of Neuroscience.

[31]  Robert C. Malenka,et al.  Endocannabinoid-mediated rescue of striatal LTD and motor deficits in Parkinson's disease models , 2007, Nature.

[32]  Henry H Yin,et al.  Disrupted motor learning and long-term synaptic plasticity in mice lacking NMDAR1 in the striatum , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[33]  P. Calabresi,et al.  Chronic Cocaine Prevents Depotentiation at Corticostriatal Synapses , 2006, Biological Psychiatry.

[34]  H. Yin,et al.  The role of the basal ganglia in habit formation , 2006, Nature Reviews Neuroscience.

[35]  J. Glowinski,et al.  Bidirectional Activity-Dependent Plasticity at Corticostriatal Synapses , 2005, The Journal of Neuroscience.

[36]  Anatol C. Kreitzer,et al.  Dopamine Modulation of State-Dependent Endocannabinoid Release and Long-Term Depression in the Striatum , 2005, The Journal of Neuroscience.

[37]  Shiaoching Gong,et al.  A gene expression atlas of the central nervous system based on bacterial artificial chromosomes , 2003, Nature.

[38]  Paul Greengard,et al.  Loss of bidirectional striatal synaptic plasticity in L-DOPA–induced dyskinesia , 2003, Nature Neuroscience.

[39]  D. Lovinger,et al.  Postsynaptic endocannabinoid release is critical to long-term depression in the striatum , 2002, Nature Neuroscience.

[40]  D. Lovinger,et al.  Activation of group I mGluRs is necessary for induction of long-term depression at striatal synapses. , 2001, Journal of neurophysiology.

[41]  Angus C. Nairn,et al.  The Dopamine/D1 Receptor Mediates the Phosphorylation and Inactivation of the Protein Tyrosine Phosphatase STEP via a PKA-Dependent Pathway , 2000, The Journal of Neuroscience.

[42]  O. Hikosaka,et al.  Role of the basal ganglia in the control of purposive saccadic eye movements. , 2000, Physiological reviews.

[43]  P. Greengard,et al.  Beyond the dopamine receptor: the DARPP-32/protein phosphatase-1 cascade. , 1999, Neuron.

[44]  J. Bargas,et al.  D1 Receptor Activation Enhances Evoked Discharge in Neostriatal Medium Spiny Neurons by Modulating an L-Type Ca2+ Conductance , 1997, The Journal of Neuroscience.

[45]  D. Lovinger,et al.  Decreased probability of neurotransmitter release underlies striatal long-term depression and postnatal development of corticostriatal synapses. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[46]  Charles J. Wilson,et al.  The origins of two-state spontaneous membrane potential fluctuations of neostriatal spiny neurons , 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[47]  P. Greengard,et al.  Modulation of calcium currents by a D1 dopaminergic protein kinase/phosphatase cascade in rat neostriatal neurons , 1995, Neuron.

[48]  A M Graybiel,et al.  The basal ganglia and adaptive motor control. , 1994, Science.

[49]  P. Calabresi,et al.  Long-term synaptic depression in the striatum: physiological and pharmacological characterization , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[50]  P. Calabresi,et al.  Long‐term Potentiation in the Striatum is Unmasked by Removing the Voltage‐dependent Magnesium Block of NMDA Receptor Channels , 1992, The European journal of neuroscience.

[51]  B. Knowlton,et al.  Learning and memory functions of the Basal Ganglia. , 2002, Annual review of neuroscience.

[52]  J. Wickens,et al.  Dopamine D-1/D-5 receptor activation is required for long-term potentiation in the rat neostriatum in vitro. , 2001, Journal of neurophysiology.

[53]  T. Dunwiddie,et al.  The role and regulation of adenosine in the central nervous system. , 2001, Annual review of neuroscience.