Solar multiconjugate adaptive optics at the Dunn Solar Telescope

Solar observations are performed over an extended field of view and the isoplanatic patch over which conventional adaptive optics (AO) provides diffraction limited resolution is a severe limitation. The development of multi-conjugate adaptive optics (MCAO) for the next generation large aperture solar telescopes is thus a top priority. The Sun is an ideal object for the development of MCAO since solar structure provides multiple "guide stars" in any desired configuration. At the Dunn Solar Telescope (DST) we implemented a dedicated MCAO bench with the goal of developing wellcharacterized, operational MCAO. The MCAO system uses two deformable mirrors conjugated to the telescope entrance pupil and a layer in the upper atmosphere, respectively. The high altitude deformable mirror can be placed at conjugates ranging from 2km to 10km altitude. We have successfully and stably locked the MCAO system on solar granulation and demonstrated the MCAO system's ability to significantly extend the corrected field of view. We present results derived from analysis of imagery taken simultaneously with conventional AO and MCAO. We also present first results from solar Ground Layer AO (GLAO) experiments.

[1]  Thomas R. Rimmele,et al.  Real-time processing for the ATST AO system , 2008 .

[2]  Jacques M. Beckers,et al.  Increasing the size of the isoplanatic patch with multiconjugate adaptive optics. , 1988 .

[3]  Richard R. Radick,et al.  Solar adaptive optics at the National Solar Observatory , 1998, Astronomical Telescopes and Instrumentation.

[4]  Richard W. Wilson,et al.  SLODAR: measuring optical turbulence altitude with a Shack–Hartmann wavefront sensor , 2002 .

[5]  Mette Owner-Petersen,et al.  Design of the LEST Slow Wavefront Sensor , 1993 .

[6]  Kevin Reardon,et al.  Speckle interferometry with adaptive optics corrected solar data , 2008 .

[7]  Thomas Berkefeld,et al.  The new 1.5 solar telescope GREGOR: progress report and results of performance tests , 2005, SPIE Optics + Photonics.

[8]  Thomas R. Rimmele,et al.  Recent advances in solar adaptive optics , 2004, SPIE Astronomical Telescopes + Instrumentation.

[9]  Thomas R. Rimmele,et al.  Solar Multi-Conjugate Adaptive Optics at the Dunn Solar Telescope , 2010 .

[10]  T. Berkefeld,et al.  Turbulence profiling using wide field of view Hartmann-Shack wavefront sensors , 2008, Astronomical Telescopes + Instrumentation.

[11]  Thomas Berkefeld,et al.  Multi-conjugate solar adaptive optics with the VTT and GREGOR , 2006, SPIE Astronomical Telescopes + Instrumentation.

[12]  Steve Hegwer,et al.  Progress with solar multi-conjugate adaptive optics at NSO , 2006, SPIE Astronomical Telescopes + Instrumentation.

[13]  Norbert Hubin,et al.  MAD star oriented: laboratory results for ground layer and multi-conjugate adaptive optics , 2006, SPIE Astronomical Telescopes + Instrumentation.

[14]  Thomas Berkefeld,et al.  Results of the multi-conjugate adaptive optics system at the German solar telescope, Tenerife , 2005, SPIE Optics + Photonics.

[15]  T. R. Rimmele The unique scientific capabilities of the Advanced Technology Solar Telescope , 2008 .

[16]  Steve Hegwer,et al.  Solar multiconjugate adaptive optics at the Dunn Solar Telescope: preliminary results , 2004, SPIE Astronomical Telescopes + Instrumentation.

[17]  Robert P. Hubbard,et al.  The wavefront correction system for the Advanced Technology Solar Telescope , 2006, SPIE Astronomical Telescopes + Instrumentation.

[19]  Thomas R. Rimmele,et al.  Advanced Technology Solar Telescope , 2001 .

[20]  B. Jurcevich,et al.  The Solar Optical Telescope for the Hinode Mission: An Overview , 2007, 0711.1715.

[21]  Alan Bridger,et al.  Advanced Software and Control for Astronomy II , 2006 .

[22]  Friedrich Wöger,et al.  Effect of anisoplanatism on the measurement accuracy of an extended-source Hartmann-Shack wavefront sensor. , 2009, Applied optics.